ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl Unicode version

Theorem tfrcl 6450
Description: Closure for transfinite recursion. As with tfr1on 6436, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcl.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcl.yx  |-  ( ph  ->  Y  e.  U. X
)
Assertion
Ref Expression
tfrcl  |-  ( ph  ->  ( F `  Y
)  e.  S )
Distinct variable groups:    f, F, x   
f, G, x    S, f, x    f, X, x    ph, f, x
Allowed substitution hints:    Y( x, f)

Proof of Theorem tfrcl
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4  |-  ( ph  ->  Ord  X )
2 orduni 4543 . . . 4  |-  ( Ord 
X  ->  Ord  U. X
)
31, 2syl 14 . . 3  |-  ( ph  ->  Ord  U. X )
4 tfrcl.yx . . 3  |-  ( ph  ->  Y  e.  U. X
)
5 ordelon 4430 . . 3  |-  ( ( Ord  U. X  /\  Y  e.  U. X )  ->  Y  e.  On )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  Y  e.  On )
74ancli 323 . 2  |-  ( ph  ->  ( ph  /\  Y  e.  U. X ) )
8 eleq1 2268 . . . . 5  |-  ( w  =  k  ->  (
w  e.  U. X  <->  k  e.  U. X ) )
98anbi2d 464 . . . 4  |-  ( w  =  k  ->  (
( ph  /\  w  e.  U. X )  <->  ( ph  /\  k  e.  U. X
) ) )
10 fveq2 5576 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1110eleq1d 2274 . . . 4  |-  ( w  =  k  ->  (
( F `  w
)  e.  S  <->  ( F `  k )  e.  S
) )
129, 11imbi12d 234 . . 3  |-  ( w  =  k  ->  (
( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S
)  <->  ( ( ph  /\  k  e.  U. X
)  ->  ( F `  k )  e.  S
) ) )
13 eleq1 2268 . . . . 5  |-  ( w  =  Y  ->  (
w  e.  U. X  <->  Y  e.  U. X ) )
1413anbi2d 464 . . . 4  |-  ( w  =  Y  ->  (
( ph  /\  w  e.  U. X )  <->  ( ph  /\  Y  e.  U. X
) ) )
15 fveq2 5576 . . . . 5  |-  ( w  =  Y  ->  ( F `  w )  =  ( F `  Y ) )
1615eleq1d 2274 . . . 4  |-  ( w  =  Y  ->  (
( F `  w
)  e.  S  <->  ( F `  Y )  e.  S
) )
1714, 16imbi12d 234 . . 3  |-  ( w  =  Y  ->  (
( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S
)  <->  ( ( ph  /\  Y  e.  U. X
)  ->  ( F `  Y )  e.  S
) ) )
18 tfrcl.f . . . . . . 7  |-  F  = recs ( G )
19 tfrcl.g . . . . . . . 8  |-  ( ph  ->  Fun  G )
2019ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Fun  G )
211ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Ord  X )
22 tfrcl.ex . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
23223adant1r 1234 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  U. X )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
24233adant1l 1233 . . . . . . 7  |-  ( ( ( ( w  e.  On  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S ) )  /\  ( ph  /\  w  e. 
U. X ) )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
25 tfrcl.u . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
2625adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  U. X )  /\  x  e.  U. X )  ->  suc  x  e.  X )
2726adantll 476 . . . . . . 7  |-  ( ( ( ( w  e.  On  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S ) )  /\  ( ph  /\  w  e. 
U. X ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
28 simprr 531 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  U. X )
2918, 20, 21, 24, 27, 28tfrcldm 6449 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  dom  F )
3018tfr2a 6407 . . . . . 6  |-  ( w  e.  dom  F  -> 
( F `  w
)  =  ( G `
 ( F  |`  w ) ) )
3129, 30syl 14 . . . . 5  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F `  w
)  =  ( G `
 ( F  |`  w ) ) )
3219ad2antrl 490 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  Fun  G )
3332adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Fun  G )
3433adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  Fun  G )
351ad2antrl 490 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  Ord  X )
3635adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Ord  X )
3736adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  Ord  X )
38 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ph )
3938, 22syl3an1 1283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
40393adant1r 1234 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w )  /\  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
4138, 25sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  x  e.  U. X )  ->  suc  x  e.  X )
4241adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w )  /\  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
4336, 2syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Ord  U. X
)
44 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  k  e.  w )
45 simplrr 536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  w  e.  U. X )
4644, 45jca 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( k  e.  w  /\  w  e.  U. X ) )
47 ordtr1 4435 . . . . . . . . . . . . . . . 16  |-  ( Ord  U. X  ->  ( ( k  e.  w  /\  w  e.  U. X )  ->  k  e.  U. X ) )
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  k  e.  U. X )
4948adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  k  e.  U. X )
5018, 34, 37, 40, 42, 49tfrcldm 6449 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  k  e.  dom  F )
5138, 48jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( ph  /\  k  e.  U. X
) )
5251imim1i 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S )  ->  ( ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  /\  k  e.  w
)  ->  ( F `  k )  e.  S
) )
5352impcom 125 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  ( F `  k )  e.  S
)
5450, 53jca 306 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) )
5554ex 115 . . . . . . . . . . 11  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S )  ->  ( k  e. 
dom  F  /\  ( F `  k )  e.  S ) ) )
5655ralimdva 2573 . . . . . . . . . 10  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  ( A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) ) )
5756imp 124 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X
)  ->  ( F `  k )  e.  S
) )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) )
5857an32s 568 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S
) )
59 tfrfun 6406 . . . . . . . . . . 11  |-  Fun recs ( G )
6018funeqi 5292 . . . . . . . . . . 11  |-  ( Fun 
F  <->  Fun recs ( G ) )
6159, 60mpbir 146 . . . . . . . . . 10  |-  Fun  F
6261a1i 9 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Fun  F )
63 ffvresb 5743 . . . . . . . . 9  |-  ( Fun 
F  ->  ( ( F  |`  w ) : w --> S  <->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) ) )
6462, 63syl 14 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( ( F  |`  w ) : w --> S  <->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S
) ) )
6558, 64mpbird 167 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F  |`  w
) : w --> S )
66 vex 2775 . . . . . . 7  |-  w  e. 
_V
67 fex 5813 . . . . . . 7  |-  ( ( ( F  |`  w
) : w --> S  /\  w  e.  _V )  ->  ( F  |`  w
)  e.  _V )
6865, 66, 67sylancl 413 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F  |`  w
)  e.  _V )
69 feq2 5409 . . . . . . . . 9  |-  ( x  =  w  ->  (
f : x --> S  <->  f :
w --> S ) )
7069imbi1d 231 . . . . . . . 8  |-  ( x  =  w  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : w --> S  ->  ( G `  f )  e.  S ) ) )
7170albidv 1847 . . . . . . 7  |-  ( x  =  w  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : w --> S  ->  ( G `  f )  e.  S
) ) )
72223expia 1208 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
7372alrimiv 1897 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
7473ralrimiva 2579 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
7574ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
7666sucid 4464 . . . . . . . . . 10  |-  w  e. 
suc  w
7776a1i 9 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  suc  w )
78 suceq 4449 . . . . . . . . . . 11  |-  ( x  =  w  ->  suc  x  =  suc  w )
7978eleq1d 2274 . . . . . . . . . 10  |-  ( x  =  w  ->  ( suc  x  e.  X  <->  suc  w  e.  X ) )
8025ralrimiva 2579 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  U. X  suc  x  e.  X
)
8180ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. x  e.  U. X  suc  x  e.  X )
8279, 81, 28rspcdva 2882 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  suc  w  e.  X )
8377, 82jca 306 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( w  e.  suc  w  /\  suc  w  e.  X ) )
84 ordtr1 4435 . . . . . . . 8  |-  ( Ord 
X  ->  ( (
w  e.  suc  w  /\  suc  w  e.  X
)  ->  w  e.  X ) )
8521, 83, 84sylc 62 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  X )
8671, 75, 85rspcdva 2882 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. f ( f : w --> S  ->  ( G `  f )  e.  S ) )
87 feq1 5408 . . . . . . . 8  |-  ( f  =  ( F  |`  w )  ->  (
f : w --> S  <->  ( F  |`  w ) : w --> S ) )
88 fveq2 5576 . . . . . . . . 9  |-  ( f  =  ( F  |`  w )  ->  ( G `  f )  =  ( G `  ( F  |`  w ) ) )
8988eleq1d 2274 . . . . . . . 8  |-  ( f  =  ( F  |`  w )  ->  (
( G `  f
)  e.  S  <->  ( G `  ( F  |`  w
) )  e.  S
) )
9087, 89imbi12d 234 . . . . . . 7  |-  ( f  =  ( F  |`  w )  ->  (
( f : w --> S  ->  ( G `  f )  e.  S
)  <->  ( ( F  |`  w ) : w --> S  ->  ( G `  ( F  |`  w
) )  e.  S
) ) )
9190spcgv 2860 . . . . . 6  |-  ( ( F  |`  w )  e.  _V  ->  ( A. f ( f : w --> S  ->  ( G `  f )  e.  S )  ->  (
( F  |`  w
) : w --> S  -> 
( G `  ( F  |`  w ) )  e.  S ) ) )
9268, 86, 65, 91syl3c 63 . . . . 5  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( G `  ( F  |`  w ) )  e.  S )
9331, 92eqeltrd 2282 . . . 4  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F `  w
)  e.  S )
9493exp31 364 . . 3  |-  ( w  e.  On  ->  ( A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
)  ->  ( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S ) ) )
9512, 17, 94tfis3 4634 . 2  |-  ( Y  e.  On  ->  (
( ph  /\  Y  e. 
U. X )  -> 
( F `  Y
)  e.  S ) )
966, 7, 95sylc 62 1  |-  ( ph  ->  ( F `  Y
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   U.cuni 3850   Ord word 4409   Oncon0 4410   suc csuc 4412   dom cdm 4675    |` cres 4677   Fun wfun 5265   -->wf 5267   ` cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391
This theorem is referenced by:  rdgon  6472  freccllem  6488  frecfcllem  6490
  Copyright terms: Public domain W3C validator