ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl Unicode version

Theorem tfrcl 6473
Description: Closure for transfinite recursion. As with tfr1on 6459, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcl.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcl.yx  |-  ( ph  ->  Y  e.  U. X
)
Assertion
Ref Expression
tfrcl  |-  ( ph  ->  ( F `  Y
)  e.  S )
Distinct variable groups:    f, F, x   
f, G, x    S, f, x    f, X, x    ph, f, x
Allowed substitution hints:    Y( x, f)

Proof of Theorem tfrcl
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4  |-  ( ph  ->  Ord  X )
2 orduni 4561 . . . 4  |-  ( Ord 
X  ->  Ord  U. X
)
31, 2syl 14 . . 3  |-  ( ph  ->  Ord  U. X )
4 tfrcl.yx . . 3  |-  ( ph  ->  Y  e.  U. X
)
5 ordelon 4448 . . 3  |-  ( ( Ord  U. X  /\  Y  e.  U. X )  ->  Y  e.  On )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  Y  e.  On )
74ancli 323 . 2  |-  ( ph  ->  ( ph  /\  Y  e.  U. X ) )
8 eleq1 2270 . . . . 5  |-  ( w  =  k  ->  (
w  e.  U. X  <->  k  e.  U. X ) )
98anbi2d 464 . . . 4  |-  ( w  =  k  ->  (
( ph  /\  w  e.  U. X )  <->  ( ph  /\  k  e.  U. X
) ) )
10 fveq2 5599 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1110eleq1d 2276 . . . 4  |-  ( w  =  k  ->  (
( F `  w
)  e.  S  <->  ( F `  k )  e.  S
) )
129, 11imbi12d 234 . . 3  |-  ( w  =  k  ->  (
( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S
)  <->  ( ( ph  /\  k  e.  U. X
)  ->  ( F `  k )  e.  S
) ) )
13 eleq1 2270 . . . . 5  |-  ( w  =  Y  ->  (
w  e.  U. X  <->  Y  e.  U. X ) )
1413anbi2d 464 . . . 4  |-  ( w  =  Y  ->  (
( ph  /\  w  e.  U. X )  <->  ( ph  /\  Y  e.  U. X
) ) )
15 fveq2 5599 . . . . 5  |-  ( w  =  Y  ->  ( F `  w )  =  ( F `  Y ) )
1615eleq1d 2276 . . . 4  |-  ( w  =  Y  ->  (
( F `  w
)  e.  S  <->  ( F `  Y )  e.  S
) )
1714, 16imbi12d 234 . . 3  |-  ( w  =  Y  ->  (
( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S
)  <->  ( ( ph  /\  Y  e.  U. X
)  ->  ( F `  Y )  e.  S
) ) )
18 tfrcl.f . . . . . . 7  |-  F  = recs ( G )
19 tfrcl.g . . . . . . . 8  |-  ( ph  ->  Fun  G )
2019ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Fun  G )
211ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Ord  X )
22 tfrcl.ex . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
23223adant1r 1234 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  U. X )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
24233adant1l 1233 . . . . . . 7  |-  ( ( ( ( w  e.  On  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S ) )  /\  ( ph  /\  w  e. 
U. X ) )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
25 tfrcl.u . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
2625adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  U. X )  /\  x  e.  U. X )  ->  suc  x  e.  X )
2726adantll 476 . . . . . . 7  |-  ( ( ( ( w  e.  On  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S ) )  /\  ( ph  /\  w  e. 
U. X ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
28 simprr 531 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  U. X )
2918, 20, 21, 24, 27, 28tfrcldm 6472 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  dom  F )
3018tfr2a 6430 . . . . . 6  |-  ( w  e.  dom  F  -> 
( F `  w
)  =  ( G `
 ( F  |`  w ) ) )
3129, 30syl 14 . . . . 5  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F `  w
)  =  ( G `
 ( F  |`  w ) ) )
3219ad2antrl 490 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  Fun  G )
3332adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Fun  G )
3433adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  Fun  G )
351ad2antrl 490 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  Ord  X )
3635adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Ord  X )
3736adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  Ord  X )
38 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ph )
3938, 22syl3an1 1283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
40393adant1r 1234 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w )  /\  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
4138, 25sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  x  e.  U. X )  ->  suc  x  e.  X )
4241adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w )  /\  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
4336, 2syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  Ord  U. X
)
44 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  k  e.  w )
45 simplrr 536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  w  e.  U. X )
4644, 45jca 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( k  e.  w  /\  w  e.  U. X ) )
47 ordtr1 4453 . . . . . . . . . . . . . . . 16  |-  ( Ord  U. X  ->  ( ( k  e.  w  /\  w  e.  U. X )  ->  k  e.  U. X ) )
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  k  e.  U. X )
4948adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  k  e.  U. X )
5018, 34, 37, 40, 42, 49tfrcldm 6472 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  k  e.  dom  F )
5138, 48jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( ph  /\  k  e.  U. X
) )
5251imim1i 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S )  ->  ( ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  /\  k  e.  w
)  ->  ( F `  k )  e.  S
) )
5352impcom 125 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  ( F `  k )  e.  S
)
5450, 53jca 306 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X
) )  /\  k  e.  w )  /\  (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) )
5554ex 115 . . . . . . . . . . 11  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  k  e.  w
)  ->  ( (
( ph  /\  k  e.  U. X )  -> 
( F `  k
)  e.  S )  ->  ( k  e. 
dom  F  /\  ( F `  k )  e.  S ) ) )
5655ralimdva 2575 . . . . . . . . . 10  |-  ( ( w  e.  On  /\  ( ph  /\  w  e. 
U. X ) )  ->  ( A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) ) )
5756imp 124 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\  ( ph  /\  w  e.  U. X ) )  /\  A. k  e.  w  ( ( ph  /\  k  e.  U. X
)  ->  ( F `  k )  e.  S
) )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) )
5857an32s 568 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S
) )
59 tfrfun 6429 . . . . . . . . . . 11  |-  Fun recs ( G )
6018funeqi 5311 . . . . . . . . . . 11  |-  ( Fun 
F  <->  Fun recs ( G ) )
6159, 60mpbir 146 . . . . . . . . . 10  |-  Fun  F
6261a1i 9 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  Fun  F )
63 ffvresb 5766 . . . . . . . . 9  |-  ( Fun 
F  ->  ( ( F  |`  w ) : w --> S  <->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S ) ) )
6462, 63syl 14 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( ( F  |`  w ) : w --> S  <->  A. k  e.  w  ( k  e.  dom  F  /\  ( F `  k )  e.  S
) ) )
6558, 64mpbird 167 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F  |`  w
) : w --> S )
66 vex 2779 . . . . . . 7  |-  w  e. 
_V
67 fex 5836 . . . . . . 7  |-  ( ( ( F  |`  w
) : w --> S  /\  w  e.  _V )  ->  ( F  |`  w
)  e.  _V )
6865, 66, 67sylancl 413 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F  |`  w
)  e.  _V )
69 feq2 5429 . . . . . . . . 9  |-  ( x  =  w  ->  (
f : x --> S  <->  f :
w --> S ) )
7069imbi1d 231 . . . . . . . 8  |-  ( x  =  w  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : w --> S  ->  ( G `  f )  e.  S ) ) )
7170albidv 1848 . . . . . . 7  |-  ( x  =  w  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : w --> S  ->  ( G `  f )  e.  S
) ) )
72223expia 1208 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
7372alrimiv 1898 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
7473ralrimiva 2581 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
7574ad2antrl 490 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
7666sucid 4482 . . . . . . . . . 10  |-  w  e. 
suc  w
7776a1i 9 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  suc  w )
78 suceq 4467 . . . . . . . . . . 11  |-  ( x  =  w  ->  suc  x  =  suc  w )
7978eleq1d 2276 . . . . . . . . . 10  |-  ( x  =  w  ->  ( suc  x  e.  X  <->  suc  w  e.  X ) )
8025ralrimiva 2581 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  U. X  suc  x  e.  X
)
8180ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. x  e.  U. X  suc  x  e.  X )
8279, 81, 28rspcdva 2889 . . . . . . . . 9  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  suc  w  e.  X )
8377, 82jca 306 . . . . . . . 8  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( w  e.  suc  w  /\  suc  w  e.  X ) )
84 ordtr1 4453 . . . . . . . 8  |-  ( Ord 
X  ->  ( (
w  e.  suc  w  /\  suc  w  e.  X
)  ->  w  e.  X ) )
8521, 83, 84sylc 62 . . . . . . 7  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  w  e.  X )
8671, 75, 85rspcdva 2889 . . . . . 6  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  ->  A. f ( f : w --> S  ->  ( G `  f )  e.  S ) )
87 feq1 5428 . . . . . . . 8  |-  ( f  =  ( F  |`  w )  ->  (
f : w --> S  <->  ( F  |`  w ) : w --> S ) )
88 fveq2 5599 . . . . . . . . 9  |-  ( f  =  ( F  |`  w )  ->  ( G `  f )  =  ( G `  ( F  |`  w ) ) )
8988eleq1d 2276 . . . . . . . 8  |-  ( f  =  ( F  |`  w )  ->  (
( G `  f
)  e.  S  <->  ( G `  ( F  |`  w
) )  e.  S
) )
9087, 89imbi12d 234 . . . . . . 7  |-  ( f  =  ( F  |`  w )  ->  (
( f : w --> S  ->  ( G `  f )  e.  S
)  <->  ( ( F  |`  w ) : w --> S  ->  ( G `  ( F  |`  w
) )  e.  S
) ) )
9190spcgv 2867 . . . . . 6  |-  ( ( F  |`  w )  e.  _V  ->  ( A. f ( f : w --> S  ->  ( G `  f )  e.  S )  ->  (
( F  |`  w
) : w --> S  -> 
( G `  ( F  |`  w ) )  e.  S ) ) )
9268, 86, 65, 91syl3c 63 . . . . 5  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( G `  ( F  |`  w ) )  e.  S )
9331, 92eqeltrd 2284 . . . 4  |-  ( ( ( w  e.  On  /\ 
A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
) )  /\  ( ph  /\  w  e.  U. X ) )  -> 
( F `  w
)  e.  S )
9493exp31 364 . . 3  |-  ( w  e.  On  ->  ( A. k  e.  w  ( ( ph  /\  k  e.  U. X )  ->  ( F `  k )  e.  S
)  ->  ( ( ph  /\  w  e.  U. X )  ->  ( F `  w )  e.  S ) ) )
9512, 17, 94tfis3 4652 . 2  |-  ( Y  e.  On  ->  (
( ph  /\  Y  e. 
U. X )  -> 
( F `  Y
)  e.  S ) )
966, 7, 95sylc 62 1  |-  ( ph  ->  ( F `  Y
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   U.cuni 3864   Ord word 4427   Oncon0 4428   suc csuc 4430   dom cdm 4693    |` cres 4695   Fun wfun 5284   -->wf 5286   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414
This theorem is referenced by:  rdgon  6495  freccllem  6511  frecfcllem  6513
  Copyright terms: Public domain W3C validator