| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt12 | Unicode version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j |
|
| cnmpt11.a |
|
| cnmpt1t.b |
|
| cnmpt12.k |
|
| cnmpt12.l |
|
| cnmpt12.c |
|
| cnmpt12.d |
|
| Ref | Expression |
|---|---|
| cnmpt12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j |
. . . . . 6
| |
| 2 | cnmpt12.k |
. . . . . 6
| |
| 3 | cnmpt11.a |
. . . . . 6
| |
| 4 | cnf2 14792 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
. . . . 5
|
| 6 | 5 | fvmptelcdm 5756 |
. . . 4
|
| 7 | cnmpt12.l |
. . . . . 6
| |
| 8 | cnmpt1t.b |
. . . . . 6
| |
| 9 | cnf2 14792 |
. . . . . 6
| |
| 10 | 1, 7, 8, 9 | syl3anc 1250 |
. . . . 5
|
| 11 | 10 | fvmptelcdm 5756 |
. . . 4
|
| 12 | 6, 11 | jca 306 |
. . . . 5
|
| 13 | txtopon 14849 |
. . . . . . . . . 10
| |
| 14 | 2, 7, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | cnmpt12.c |
. . . . . . . . . . 11
| |
| 16 | cntop2 14789 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . 10
|
| 18 | toptopon2 14606 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | sylib 122 |
. . . . . . . . 9
|
| 20 | cnf2 14792 |
. . . . . . . . 9
| |
| 21 | 14, 19, 15, 20 | syl3anc 1250 |
. . . . . . . 8
|
| 22 | eqid 2207 |
. . . . . . . . 9
| |
| 23 | 22 | fmpo 6310 |
. . . . . . . 8
|
| 24 | 21, 23 | sylibr 134 |
. . . . . . 7
|
| 25 | r2al 2527 |
. . . . . . 7
| |
| 26 | 24, 25 | sylib 122 |
. . . . . 6
|
| 27 | 26 | adantr 276 |
. . . . 5
|
| 28 | eleq1 2270 |
. . . . . . . 8
| |
| 29 | eleq1 2270 |
. . . . . . . 8
| |
| 30 | 28, 29 | bi2anan9 606 |
. . . . . . 7
|
| 31 | cnmpt12.d |
. . . . . . . 8
| |
| 32 | 31 | eleq1d 2276 |
. . . . . . 7
|
| 33 | 30, 32 | imbi12d 234 |
. . . . . 6
|
| 34 | 33 | spc2gv 2871 |
. . . . 5
|
| 35 | 12, 27, 12, 34 | syl3c 63 |
. . . 4
|
| 36 | 31, 22 | ovmpoga 6098 |
. . . 4
|
| 37 | 6, 11, 35, 36 | syl3anc 1250 |
. . 3
|
| 38 | 37 | mpteq2dva 4150 |
. 2
|
| 39 | 1, 3, 8, 15 | cnmpt12f 14873 |
. 2
|
| 40 | 38, 39 | eqeltrrd 2285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-tx 14840 |
| This theorem is referenced by: plycn 15349 |
| Copyright terms: Public domain | W3C validator |