ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexico Unicode version

Theorem rexico 11727
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, k, A    B, j, k    ph, j
Allowed substitution hint:    ph( k)

Proof of Theorem rexico
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  B  e.  RR )
2 pnfxr 8195 . . . 4  |- +oo  e.  RR*
3 icossre 10146 . . . 4  |-  ( ( B  e.  RR  /\ +oo  e.  RR* )  ->  ( B [,) +oo )  C_  RR )
41, 2, 3sylancl 413 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( B [,) +oo )  C_  RR )
5 ssrexv 3289 . . 3  |-  ( ( B [,) +oo )  C_  RR  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
64, 5syl 14 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) ) )
7 maxcl 11716 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
87adantll 476 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
9 maxle1 11717 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
109adantll 476 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
11 elicopnf 10161 . . . . . . 7  |-  ( B  e.  RR  ->  ( sup ( { B , 
j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B , 
j } ,  RR ,  <  ) ) ) )
1211ad2antlr 489 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B ,  j } ,  RR ,  <  ) ) ) )
138, 10, 12mpbir2and 950 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo ) )
14 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  B  e.  RR )
15 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  j  e.  RR )
16 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  A  C_  RR )
1716sselda 3224 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  k  e.  RR )
18 maxleastb 11720 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  ( sup ( { B , 
j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_  k ) ) )
1914, 15, 17, 18syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
20 simpr 110 . . . . . . . 8  |-  ( ( B  <_  k  /\  j  <_  k )  -> 
j  <_  k )
2119, 20biimtrdi 163 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  j  <_  k ) )
2221imim1d 75 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ph )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2322ralimdva 2597 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
24 breq1 4085 . . . . . . . 8  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( n  <_ 
k  <->  sup ( { B ,  j } ,  RR ,  <  )  <_ 
k ) )
2524imbi1d 231 . . . . . . 7  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( ( n  <_  k  ->  ph )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
2625ralbidv 2530 . . . . . 6  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2726rspcev 2907 . . . . 5  |-  ( ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  /\  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph )
)  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) )
2813, 23, 27syl6an 1476 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) ) )
2928rexlimdva 2648 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) ) )
30 breq1 4085 . . . . . 6  |-  ( n  =  j  ->  (
n  <_  k  <->  j  <_  k ) )
3130imbi1d 231 . . . . 5  |-  ( n  =  j  ->  (
( n  <_  k  ->  ph )  <->  ( j  <_  k  ->  ph ) ) )
3231ralbidv 2530 . . . 4  |-  ( n  =  j  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
3332cbvrexv 2766 . . 3  |-  ( E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph )  <->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) )
3429, 33imbitrdi 161 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) ) )
356, 34impbid 129 1  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   {cpr 3667   class class class wbr 4082  (class class class)co 6000   supcsup 7145   RRcr 7994   +oocpnf 8174   RR*cxr 8176    < clt 8177    <_ cle 8178   [,)cico 10082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-ico 10086  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator