ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexico Unicode version

Theorem rexico 11098
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, k, A    B, j, k    ph, j
Allowed substitution hint:    ph( k)

Proof of Theorem rexico
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  B  e.  RR )
2 pnfxr 7909 . . . 4  |- +oo  e.  RR*
3 icossre 9836 . . . 4  |-  ( ( B  e.  RR  /\ +oo  e.  RR* )  ->  ( B [,) +oo )  C_  RR )
41, 2, 3sylancl 410 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( B [,) +oo )  C_  RR )
5 ssrexv 3189 . . 3  |-  ( ( B [,) +oo )  C_  RR  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
64, 5syl 14 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) ) )
7 maxcl 11087 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
87adantll 468 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
9 maxle1 11088 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
109adantll 468 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
11 elicopnf 9851 . . . . . . 7  |-  ( B  e.  RR  ->  ( sup ( { B , 
j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B , 
j } ,  RR ,  <  ) ) ) )
1211ad2antlr 481 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B ,  j } ,  RR ,  <  ) ) ) )
138, 10, 12mpbir2and 929 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo ) )
14 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  B  e.  RR )
15 simplr 520 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  j  e.  RR )
16 simpll 519 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  A  C_  RR )
1716sselda 3124 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  k  e.  RR )
18 maxleastb 11091 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  ( sup ( { B , 
j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_  k ) ) )
1914, 15, 17, 18syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
20 simpr 109 . . . . . . . 8  |-  ( ( B  <_  k  /\  j  <_  k )  -> 
j  <_  k )
2119, 20syl6bi 162 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  j  <_  k ) )
2221imim1d 75 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ph )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2322ralimdva 2521 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
24 breq1 3964 . . . . . . . 8  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( n  <_ 
k  <->  sup ( { B ,  j } ,  RR ,  <  )  <_ 
k ) )
2524imbi1d 230 . . . . . . 7  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( ( n  <_  k  ->  ph )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
2625ralbidv 2454 . . . . . 6  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2726rspcev 2813 . . . . 5  |-  ( ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  /\  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph )
)  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) )
2813, 23, 27syl6an 1411 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) ) )
2928rexlimdva 2571 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) ) )
30 breq1 3964 . . . . . 6  |-  ( n  =  j  ->  (
n  <_  k  <->  j  <_  k ) )
3130imbi1d 230 . . . . 5  |-  ( n  =  j  ->  (
( n  <_  k  ->  ph )  <->  ( j  <_  k  ->  ph ) ) )
3231ralbidv 2454 . . . 4  |-  ( n  =  j  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
3332cbvrexv 2678 . . 3  |-  ( E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph )  <->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) )
3429, 33syl6ib 160 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) ) )
356, 34impbid 128 1  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   A.wral 2432   E.wrex 2433    C_ wss 3098   {cpr 3557   class class class wbr 3961  (class class class)co 5814   supcsup 6914   RRcr 7710   +oocpnf 7888   RR*cxr 7890    < clt 7891    <_ cle 7892   [,)cico 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-rp 9539  df-ico 9776  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator