Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ublbneg | Unicode version |
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9489. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
ublbneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3968 | . . . . 5 | |
2 | 1 | cbvralv 2680 | . . . 4 |
3 | 2 | rexbii 2464 | . . 3 |
4 | breq2 3969 | . . . . 5 | |
5 | 4 | ralbidv 2457 | . . . 4 |
6 | 5 | cbvrexv 2681 | . . 3 |
7 | 3, 6 | bitri 183 | . 2 |
8 | renegcl 8119 | . . . 4 | |
9 | elrabi 2865 | . . . . . . . . 9 | |
10 | negeq 8051 | . . . . . . . . . . . 12 | |
11 | 10 | eleq1d 2226 | . . . . . . . . . . 11 |
12 | 11 | elrab3 2869 | . . . . . . . . . 10 |
13 | 12 | biimpd 143 | . . . . . . . . 9 |
14 | 9, 13 | mpcom 36 | . . . . . . . 8 |
15 | breq1 3968 | . . . . . . . . 9 | |
16 | 15 | rspcv 2812 | . . . . . . . 8 |
17 | 14, 16 | syl 14 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | lenegcon1 8324 | . . . . . . 7 | |
20 | 9, 19 | sylan2 284 | . . . . . 6 |
21 | 18, 20 | sylibrd 168 | . . . . 5 |
22 | 21 | ralrimdva 2537 | . . . 4 |
23 | breq1 3968 | . . . . . 6 | |
24 | 23 | ralbidv 2457 | . . . . 5 |
25 | 24 | rspcev 2816 | . . . 4 |
26 | 8, 22, 25 | syl6an 1414 | . . 3 |
27 | 26 | rexlimiv 2568 | . 2 |
28 | 7, 27 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 crab 2439 class class class wbr 3965 cr 7714 cle 7896 cneg 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |