ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg Unicode version

Theorem ublbneg 9504
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9489. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Distinct variable group:    x, A, y, z

Proof of Theorem ublbneg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3968 . . . . 5  |-  ( b  =  y  ->  (
b  <_  a  <->  y  <_  a ) )
21cbvralv 2680 . . . 4  |-  ( A. b  e.  A  b  <_  a  <->  A. y  e.  A  y  <_  a )
32rexbii 2464 . . 3  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. a  e.  RR  A. y  e.  A  y  <_  a )
4 breq2 3969 . . . . 5  |-  ( a  =  x  ->  (
y  <_  a  <->  y  <_  x ) )
54ralbidv 2457 . . . 4  |-  ( a  =  x  ->  ( A. y  e.  A  y  <_  a  <->  A. y  e.  A  y  <_  x ) )
65cbvrexv 2681 . . 3  |-  ( E. a  e.  RR  A. y  e.  A  y  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
73, 6bitri 183 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
8 renegcl 8119 . . . 4  |-  ( a  e.  RR  ->  -u a  e.  RR )
9 elrabi 2865 . . . . . . . . 9  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  y  e.  RR )
10 negeq 8051 . . . . . . . . . . . 12  |-  ( z  =  y  ->  -u z  =  -u y )
1110eleq1d 2226 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u z  e.  A  <->  -u y  e.  A ) )
1211elrab3 2869 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u y  e.  A ) )
1312biimpd 143 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  -> 
-u y  e.  A
) )
149, 13mpcom 36 . . . . . . . 8  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  -u y  e.  A )
15 breq1 3968 . . . . . . . . 9  |-  ( b  =  -u y  ->  (
b  <_  a  <->  -u y  <_ 
a ) )
1615rspcv 2812 . . . . . . . 8  |-  ( -u y  e.  A  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1714, 16syl 14 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1817adantl 275 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u y  <_  a
) )
19 lenegcon1 8324 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  <_ 
y  <->  -u y  <_  a
) )
209, 19sylan2 284 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( -u a  <_  y  <->  -u y  <_  a )
)
2118, 20sylibrd 168 . . . . 5  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u a  <_  y
) )
2221ralrimdva 2537 . . . 4  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
23 breq1 3968 . . . . . 6  |-  ( x  =  -u a  ->  (
x  <_  y  <->  -u a  <_ 
y ) )
2423ralbidv 2457 . . . . 5  |-  ( x  =  -u a  ->  ( A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y  <->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
2524rspcev 2816 . . . 4  |-  ( (
-u a  e.  RR  /\ 
A. y  e.  {
z  e.  RR  |  -u z  e.  A } -u a  <_  y )  ->  E. x  e.  RR  A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y )
268, 22, 25syl6an 1414 . . 3  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y ) )
2726rexlimiv 2568 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
287, 27sylbir 134 1  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   {crab 2439   class class class wbr 3965   RRcr 7714    <_ cle 7896   -ucneg 8030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator