ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg Unicode version

Theorem ublbneg 9808
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9790. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Distinct variable group:    x, A, y, z

Proof of Theorem ublbneg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4086 . . . . 5  |-  ( b  =  y  ->  (
b  <_  a  <->  y  <_  a ) )
21cbvralv 2765 . . . 4  |-  ( A. b  e.  A  b  <_  a  <->  A. y  e.  A  y  <_  a )
32rexbii 2537 . . 3  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. a  e.  RR  A. y  e.  A  y  <_  a )
4 breq2 4087 . . . . 5  |-  ( a  =  x  ->  (
y  <_  a  <->  y  <_  x ) )
54ralbidv 2530 . . . 4  |-  ( a  =  x  ->  ( A. y  e.  A  y  <_  a  <->  A. y  e.  A  y  <_  x ) )
65cbvrexv 2766 . . 3  |-  ( E. a  e.  RR  A. y  e.  A  y  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
73, 6bitri 184 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
8 renegcl 8407 . . . 4  |-  ( a  e.  RR  ->  -u a  e.  RR )
9 elrabi 2956 . . . . . . . . 9  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  y  e.  RR )
10 negeq 8339 . . . . . . . . . . . 12  |-  ( z  =  y  ->  -u z  =  -u y )
1110eleq1d 2298 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u z  e.  A  <->  -u y  e.  A ) )
1211elrab3 2960 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u y  e.  A ) )
1312biimpd 144 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  -> 
-u y  e.  A
) )
149, 13mpcom 36 . . . . . . . 8  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  -u y  e.  A )
15 breq1 4086 . . . . . . . . 9  |-  ( b  =  -u y  ->  (
b  <_  a  <->  -u y  <_ 
a ) )
1615rspcv 2903 . . . . . . . 8  |-  ( -u y  e.  A  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1714, 16syl 14 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1817adantl 277 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u y  <_  a
) )
19 lenegcon1 8613 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  <_ 
y  <->  -u y  <_  a
) )
209, 19sylan2 286 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( -u a  <_  y  <->  -u y  <_  a )
)
2118, 20sylibrd 169 . . . . 5  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u a  <_  y
) )
2221ralrimdva 2610 . . . 4  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
23 breq1 4086 . . . . . 6  |-  ( x  =  -u a  ->  (
x  <_  y  <->  -u a  <_ 
y ) )
2423ralbidv 2530 . . . . 5  |-  ( x  =  -u a  ->  ( A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y  <->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
2524rspcev 2907 . . . 4  |-  ( (
-u a  e.  RR  /\ 
A. y  e.  {
z  e.  RR  |  -u z  e.  A } -u a  <_  y )  ->  E. x  e.  RR  A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y )
268, 22, 25syl6an 1476 . . 3  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y ) )
2726rexlimiv 2642 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
287, 27sylbir 135 1  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   class class class wbr 4083   RRcr 7998    <_ cle 8182   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator