Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ublbneg | Unicode version |
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9529. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
ublbneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3984 | . . . . 5 | |
2 | 1 | cbvralv 2691 | . . . 4 |
3 | 2 | rexbii 2472 | . . 3 |
4 | breq2 3985 | . . . . 5 | |
5 | 4 | ralbidv 2465 | . . . 4 |
6 | 5 | cbvrexv 2692 | . . 3 |
7 | 3, 6 | bitri 183 | . 2 |
8 | renegcl 8155 | . . . 4 | |
9 | elrabi 2878 | . . . . . . . . 9 | |
10 | negeq 8087 | . . . . . . . . . . . 12 | |
11 | 10 | eleq1d 2234 | . . . . . . . . . . 11 |
12 | 11 | elrab3 2882 | . . . . . . . . . 10 |
13 | 12 | biimpd 143 | . . . . . . . . 9 |
14 | 9, 13 | mpcom 36 | . . . . . . . 8 |
15 | breq1 3984 | . . . . . . . . 9 | |
16 | 15 | rspcv 2825 | . . . . . . . 8 |
17 | 14, 16 | syl 14 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | lenegcon1 8360 | . . . . . . 7 | |
20 | 9, 19 | sylan2 284 | . . . . . 6 |
21 | 18, 20 | sylibrd 168 | . . . . 5 |
22 | 21 | ralrimdva 2545 | . . . 4 |
23 | breq1 3984 | . . . . . 6 | |
24 | 23 | ralbidv 2465 | . . . . 5 |
25 | 24 | rspcev 2829 | . . . 4 |
26 | 8, 22, 25 | syl6an 1422 | . . 3 |
27 | 26 | rexlimiv 2576 | . 2 |
28 | 7, 27 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2443 wrex 2444 crab 2447 class class class wbr 3981 cr 7748 cle 7930 cneg 8066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |