ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg Unicode version

Theorem ublbneg 9547
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9529. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Distinct variable group:    x, A, y, z

Proof of Theorem ublbneg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3984 . . . . 5  |-  ( b  =  y  ->  (
b  <_  a  <->  y  <_  a ) )
21cbvralv 2691 . . . 4  |-  ( A. b  e.  A  b  <_  a  <->  A. y  e.  A  y  <_  a )
32rexbii 2472 . . 3  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. a  e.  RR  A. y  e.  A  y  <_  a )
4 breq2 3985 . . . . 5  |-  ( a  =  x  ->  (
y  <_  a  <->  y  <_  x ) )
54ralbidv 2465 . . . 4  |-  ( a  =  x  ->  ( A. y  e.  A  y  <_  a  <->  A. y  e.  A  y  <_  x ) )
65cbvrexv 2692 . . 3  |-  ( E. a  e.  RR  A. y  e.  A  y  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
73, 6bitri 183 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
8 renegcl 8155 . . . 4  |-  ( a  e.  RR  ->  -u a  e.  RR )
9 elrabi 2878 . . . . . . . . 9  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  y  e.  RR )
10 negeq 8087 . . . . . . . . . . . 12  |-  ( z  =  y  ->  -u z  =  -u y )
1110eleq1d 2234 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u z  e.  A  <->  -u y  e.  A ) )
1211elrab3 2882 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u y  e.  A ) )
1312biimpd 143 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  -> 
-u y  e.  A
) )
149, 13mpcom 36 . . . . . . . 8  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  -u y  e.  A )
15 breq1 3984 . . . . . . . . 9  |-  ( b  =  -u y  ->  (
b  <_  a  <->  -u y  <_ 
a ) )
1615rspcv 2825 . . . . . . . 8  |-  ( -u y  e.  A  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1714, 16syl 14 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1817adantl 275 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u y  <_  a
) )
19 lenegcon1 8360 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  <_ 
y  <->  -u y  <_  a
) )
209, 19sylan2 284 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( -u a  <_  y  <->  -u y  <_  a )
)
2118, 20sylibrd 168 . . . . 5  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u a  <_  y
) )
2221ralrimdva 2545 . . . 4  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
23 breq1 3984 . . . . . 6  |-  ( x  =  -u a  ->  (
x  <_  y  <->  -u a  <_ 
y ) )
2423ralbidv 2465 . . . . 5  |-  ( x  =  -u a  ->  ( A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y  <->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
2524rspcev 2829 . . . 4  |-  ( (
-u a  e.  RR  /\ 
A. y  e.  {
z  e.  RR  |  -u z  e.  A } -u a  <_  y )  ->  E. x  e.  RR  A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y )
268, 22, 25syl6an 1422 . . 3  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y ) )
2726rexlimiv 2576 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
287, 27sylbir 134 1  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2443   E.wrex 2444   {crab 2447   class class class wbr 3981   RRcr 7748    <_ cle 7930   -ucneg 8066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator