ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg Unicode version

Theorem ublbneg 9608
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9590. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Distinct variable group:    x, A, y, z

Proof of Theorem ublbneg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4005 . . . . 5  |-  ( b  =  y  ->  (
b  <_  a  <->  y  <_  a ) )
21cbvralv 2703 . . . 4  |-  ( A. b  e.  A  b  <_  a  <->  A. y  e.  A  y  <_  a )
32rexbii 2484 . . 3  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. a  e.  RR  A. y  e.  A  y  <_  a )
4 breq2 4006 . . . . 5  |-  ( a  =  x  ->  (
y  <_  a  <->  y  <_  x ) )
54ralbidv 2477 . . . 4  |-  ( a  =  x  ->  ( A. y  e.  A  y  <_  a  <->  A. y  e.  A  y  <_  x ) )
65cbvrexv 2704 . . 3  |-  ( E. a  e.  RR  A. y  e.  A  y  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
73, 6bitri 184 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
8 renegcl 8213 . . . 4  |-  ( a  e.  RR  ->  -u a  e.  RR )
9 elrabi 2890 . . . . . . . . 9  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  y  e.  RR )
10 negeq 8145 . . . . . . . . . . . 12  |-  ( z  =  y  ->  -u z  =  -u y )
1110eleq1d 2246 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u z  e.  A  <->  -u y  e.  A ) )
1211elrab3 2894 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u y  e.  A ) )
1312biimpd 144 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  -> 
-u y  e.  A
) )
149, 13mpcom 36 . . . . . . . 8  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  -u y  e.  A )
15 breq1 4005 . . . . . . . . 9  |-  ( b  =  -u y  ->  (
b  <_  a  <->  -u y  <_ 
a ) )
1615rspcv 2837 . . . . . . . 8  |-  ( -u y  e.  A  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1714, 16syl 14 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1817adantl 277 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u y  <_  a
) )
19 lenegcon1 8418 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  <_ 
y  <->  -u y  <_  a
) )
209, 19sylan2 286 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( -u a  <_  y  <->  -u y  <_  a )
)
2118, 20sylibrd 169 . . . . 5  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u a  <_  y
) )
2221ralrimdva 2557 . . . 4  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
23 breq1 4005 . . . . . 6  |-  ( x  =  -u a  ->  (
x  <_  y  <->  -u a  <_ 
y ) )
2423ralbidv 2477 . . . . 5  |-  ( x  =  -u a  ->  ( A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y  <->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
2524rspcev 2841 . . . 4  |-  ( (
-u a  e.  RR  /\ 
A. y  e.  {
z  e.  RR  |  -u z  e.  A } -u a  <_  y )  ->  E. x  e.  RR  A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y )
268, 22, 25syl6an 1434 . . 3  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y ) )
2726rexlimiv 2588 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
287, 27sylbir 135 1  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   class class class wbr 4002   RRcr 7806    <_ cle 7988   -ucneg 8124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7898  ax-resscn 7899  ax-1cn 7900  ax-1re 7901  ax-icn 7902  ax-addcl 7903  ax-addrcl 7904  ax-mulcl 7905  ax-addcom 7907  ax-addass 7909  ax-distr 7911  ax-i2m1 7912  ax-0id 7915  ax-rnegex 7916  ax-cnre 7918  ax-pre-ltadd 7923
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5176  df-fun 5216  df-fv 5222  df-riota 5827  df-ov 5874  df-oprab 5875  df-mpo 5876  df-pnf 7989  df-mnf 7990  df-xr 7991  df-ltxr 7992  df-le 7993  df-sub 8125  df-neg 8126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator