ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg Unicode version

Theorem ublbneg 9098
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9083. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Distinct variable group:    x, A, y, z

Proof of Theorem ublbneg
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3848 . . . . 5  |-  ( b  =  y  ->  (
b  <_  a  <->  y  <_  a ) )
21cbvralv 2590 . . . 4  |-  ( A. b  e.  A  b  <_  a  <->  A. y  e.  A  y  <_  a )
32rexbii 2385 . . 3  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. a  e.  RR  A. y  e.  A  y  <_  a )
4 breq2 3849 . . . . 5  |-  ( a  =  x  ->  (
y  <_  a  <->  y  <_  x ) )
54ralbidv 2380 . . . 4  |-  ( a  =  x  ->  ( A. y  e.  A  y  <_  a  <->  A. y  e.  A  y  <_  x ) )
65cbvrexv 2591 . . 3  |-  ( E. a  e.  RR  A. y  e.  A  y  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
73, 6bitri 182 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  <->  E. x  e.  RR  A. y  e.  A  y  <_  x )
8 renegcl 7743 . . . 4  |-  ( a  e.  RR  ->  -u a  e.  RR )
9 elrabi 2768 . . . . . . . . 9  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  y  e.  RR )
10 negeq 7675 . . . . . . . . . . . 12  |-  ( z  =  y  ->  -u z  =  -u y )
1110eleq1d 2156 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u z  e.  A  <->  -u y  e.  A ) )
1211elrab3 2772 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u y  e.  A ) )
1312biimpd 142 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  { z  e.  RR  |  -u z  e.  A }  -> 
-u y  e.  A
) )
149, 13mpcom 36 . . . . . . . 8  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  -u y  e.  A )
15 breq1 3848 . . . . . . . . 9  |-  ( b  =  -u y  ->  (
b  <_  a  <->  -u y  <_ 
a ) )
1615rspcv 2718 . . . . . . . 8  |-  ( -u y  e.  A  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1714, 16syl 14 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  -u z  e.  A }  ->  ( A. b  e.  A  b  <_  a  ->  -u y  <_  a ) )
1817adantl 271 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u y  <_  a
) )
19 lenegcon1 7944 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  <_ 
y  <->  -u y  <_  a
) )
209, 19sylan2 280 . . . . . 6  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( -u a  <_  y  <->  -u y  <_  a )
)
2118, 20sylibrd 167 . . . . 5  |-  ( ( a  e.  RR  /\  y  e.  { z  e.  RR  |  -u z  e.  A } )  -> 
( A. b  e.  A  b  <_  a  -> 
-u a  <_  y
) )
2221ralrimdva 2453 . . . 4  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
23 breq1 3848 . . . . . 6  |-  ( x  =  -u a  ->  (
x  <_  y  <->  -u a  <_ 
y ) )
2423ralbidv 2380 . . . . 5  |-  ( x  =  -u a  ->  ( A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y  <->  A. y  e.  { z  e.  RR  |  -u z  e.  A } -u a  <_  y
) )
2524rspcev 2722 . . . 4  |-  ( (
-u a  e.  RR  /\ 
A. y  e.  {
z  e.  RR  |  -u z  e.  A } -u a  <_  y )  ->  E. x  e.  RR  A. y  e.  { z  e.  RR  |  -u z  e.  A }
x  <_  y )
268, 22, 25syl6an 1368 . . 3  |-  ( a  e.  RR  ->  ( A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y ) )
2726rexlimiv 2483 . 2  |-  ( E. a  e.  RR  A. b  e.  A  b  <_  a  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
287, 27sylbir 133 1  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   {crab 2363   class class class wbr 3845   RRcr 7349    <_ cle 7523   -ucneg 7654
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator