ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmconst Unicode version

Theorem lmconst 14898
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmconst  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )

Proof of Theorem lmconst
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1022 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  P  e.  X )
2 simp3 1023 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 uzid 9744 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
42, 3syl 14 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ( ZZ>= `  M )
)
5 lmconst.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleqtrrdi 2323 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  Z )
7 idd 21 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( P  e.  u  ->  P  e.  u ) )
87ralrimdva 2610 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  A. k  e.  ( ZZ>= `  M ) P  e.  u ) )
9 fveq2 5629 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
109raleqdv 2734 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) P  e.  u  <->  A. k  e.  ( ZZ>= `  M ) P  e.  u )
)
1110rspcev 2907 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  ( ZZ>= `  M ) P  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
126, 8, 11syl6an 1476 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u ) )
1312ralrimivw 2604 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
)
14 simp1 1021 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  J  e.  (TopOn `  X )
)
15 fconst6g 5526 . . . 4  |-  ( P  e.  X  ->  ( Z  X.  { P }
) : Z --> X )
161, 15syl 14 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) : Z --> X )
17 fvconst2g 5857 . . . 4  |-  ( ( P  e.  X  /\  k  e.  Z )  ->  ( ( Z  X.  { P } ) `  k )  =  P )
181, 17sylan 283 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  Z )  ->  (
( Z  X.  { P } ) `  k
)  =  P )
1914, 5, 2, 16, 18lmbrf 14897 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  (
( Z  X.  { P } ) ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
) ) )
201, 13, 19mpbir2and 950 1  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {csn 3666   class class class wbr 4083    X. cxp 4717   -->wf 5314   ` cfv 5318   ZZcz 9454   ZZ>=cuz 9730  TopOnctopon 14692   ~~> tclm 14869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pm 6806  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-top 14680  df-topon 14693  df-lm 14872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator