ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmconst Unicode version

Theorem lmconst 12757
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmconst  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )

Proof of Theorem lmconst
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 987 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  P  e.  X )
2 simp3 988 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 uzid 9471 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
42, 3syl 14 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ( ZZ>= `  M )
)
5 lmconst.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleqtrrdi 2258 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  Z )
7 idd 21 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( P  e.  u  ->  P  e.  u ) )
87ralrimdva 2544 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  A. k  e.  ( ZZ>= `  M ) P  e.  u ) )
9 fveq2 5480 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
109raleqdv 2665 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) P  e.  u  <->  A. k  e.  ( ZZ>= `  M ) P  e.  u )
)
1110rspcev 2825 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  ( ZZ>= `  M ) P  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
126, 8, 11syl6an 1421 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u ) )
1312ralrimivw 2538 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
)
14 simp1 986 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  J  e.  (TopOn `  X )
)
15 fconst6g 5380 . . . 4  |-  ( P  e.  X  ->  ( Z  X.  { P }
) : Z --> X )
161, 15syl 14 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) : Z --> X )
17 fvconst2g 5693 . . . 4  |-  ( ( P  e.  X  /\  k  e.  Z )  ->  ( ( Z  X.  { P } ) `  k )  =  P )
181, 17sylan 281 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  Z )  ->  (
( Z  X.  { P } ) `  k
)  =  P )
1914, 5, 2, 16, 18lmbrf 12756 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  (
( Z  X.  { P } ) ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
) ) )
201, 13, 19mpbir2and 933 1  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {csn 3570   class class class wbr 3976    X. cxp 4596   -->wf 5178   ` cfv 5182   ZZcz 9182   ZZ>=cuz 9457  TopOnctopon 12549   ~~> tclm 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pm 6608  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-top 12537  df-topon 12550  df-lm 12731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator