ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmconst Unicode version

Theorem lmconst 12422
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmconst  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )

Proof of Theorem lmconst
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 983 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  P  e.  X )
2 simp3 984 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 uzid 9363 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
42, 3syl 14 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ( ZZ>= `  M )
)
5 lmconst.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleqtrrdi 2234 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  Z )
7 idd 21 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( P  e.  u  ->  P  e.  u ) )
87ralrimdva 2515 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  A. k  e.  ( ZZ>= `  M ) P  e.  u ) )
9 fveq2 5428 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
109raleqdv 2635 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) P  e.  u  <->  A. k  e.  ( ZZ>= `  M ) P  e.  u )
)
1110rspcev 2792 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  ( ZZ>= `  M ) P  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
126, 8, 11syl6an 1411 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u ) )
1312ralrimivw 2509 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
)
14 simp1 982 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  J  e.  (TopOn `  X )
)
15 fconst6g 5328 . . . 4  |-  ( P  e.  X  ->  ( Z  X.  { P }
) : Z --> X )
161, 15syl 14 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) : Z --> X )
17 fvconst2g 5641 . . . 4  |-  ( ( P  e.  X  /\  k  e.  Z )  ->  ( ( Z  X.  { P } ) `  k )  =  P )
181, 17sylan 281 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  Z )  ->  (
( Z  X.  { P } ) `  k
)  =  P )
1914, 5, 2, 16, 18lmbrf 12421 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  (
( Z  X.  { P } ) ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
) ) )
201, 13, 19mpbir2and 929 1  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {csn 3531   class class class wbr 3936    X. cxp 4544   -->wf 5126   ` cfv 5130   ZZcz 9077   ZZ>=cuz 9349  TopOnctopon 12214   ~~> tclm 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-pm 6552  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-uz 9350  df-top 12202  df-topon 12215  df-lm 12396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator