ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2lem Unicode version

Theorem dvds2lem 12309
Description: A lemma to assist theorems of  || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
dvds2lem.2  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
dvds2lem.3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds2lem.4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
dvds2lem.5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds2lem  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Distinct variable groups:    x, I, y   
x, J, y    x, K, y    x, L, y   
x, M, y    x, N, y    ph, x, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem dvds2lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
2 dvds2lem.2 . . . . . 6  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
3 divides 12295 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  ||  J  <->  E. x  e.  ZZ  (
x  x.  I )  =  J ) )
4 divides 12295 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  ||  L  <->  E. y  e.  ZZ  (
y  x.  K )  =  L ) )
53, 4bi2anan9 608 . . . . . 6  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
61, 2, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
76biimpd 144 . . . 4  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  ( E. x  e.  ZZ  (
x  x.  I )  =  J  /\  E. y  e.  ZZ  (
y  x.  K )  =  L ) ) )
8 reeanv 2701 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  x.  I
)  =  J  /\  ( y  x.  K
)  =  L )  <-> 
( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) )
97, 8imbitrrdi 162 . . 3  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L ) ) )
10 dvds2lem.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
11 dvds2lem.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
12 oveq1 6007 . . . . . . 7  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
1312eqeq1d 2238 . . . . . 6  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
1413rspcev 2907 . . . . 5  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
1510, 11, 14syl6an 1476 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
1615rexlimdvva 2656 . . 3  |-  ( ph  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
179, 16syld 45 . 2  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
18 dvds2lem.3 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
19 divides 12295 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2018, 19syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2117, 20sylibrd 169 1  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000    x. cmul 8000   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-iota 5277  df-fv 5325  df-ov 6003  df-dvds 12294
This theorem is referenced by:  dvds2ln  12330  dvds2add  12331  dvds2sub  12332  dvdstr  12334
  Copyright terms: Public domain W3C validator