Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds2lem | Unicode version |
Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2lem.1 | |
dvds2lem.2 | |
dvds2lem.3 | |
dvds2lem.4 | |
dvds2lem.5 |
Ref | Expression |
---|---|
dvds2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds2lem.1 | . . . . . 6 | |
2 | dvds2lem.2 | . . . . . 6 | |
3 | divides 11729 | . . . . . . 7 | |
4 | divides 11729 | . . . . . . 7 | |
5 | 3, 4 | bi2anan9 596 | . . . . . 6 |
6 | 1, 2, 5 | syl2anc 409 | . . . . 5 |
7 | 6 | biimpd 143 | . . . 4 |
8 | reeanv 2635 | . . . 4 | |
9 | 7, 8 | syl6ibr 161 | . . 3 |
10 | dvds2lem.4 | . . . . 5 | |
11 | dvds2lem.5 | . . . . 5 | |
12 | oveq1 5849 | . . . . . . 7 | |
13 | 12 | eqeq1d 2174 | . . . . . 6 |
14 | 13 | rspcev 2830 | . . . . 5 |
15 | 10, 11, 14 | syl6an 1422 | . . . 4 |
16 | 15 | rexlimdvva 2591 | . . 3 |
17 | 9, 16 | syld 45 | . 2 |
18 | dvds2lem.3 | . . 3 | |
19 | divides 11729 | . . 3 | |
20 | 18, 19 | syl 14 | . 2 |
21 | 17, 20 | sylibrd 168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cmul 7758 cz 9191 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-iota 5153 df-fv 5196 df-ov 5845 df-dvds 11728 |
This theorem is referenced by: dvds2ln 11764 dvds2add 11765 dvds2sub 11766 dvdstr 11768 |
Copyright terms: Public domain | W3C validator |