Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds2lem | Unicode version |
Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2lem.1 | |
dvds2lem.2 | |
dvds2lem.3 | |
dvds2lem.4 | |
dvds2lem.5 |
Ref | Expression |
---|---|
dvds2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds2lem.1 | . . . . . 6 | |
2 | dvds2lem.2 | . . . . . 6 | |
3 | divides 11662 | . . . . . . 7 | |
4 | divides 11662 | . . . . . . 7 | |
5 | 3, 4 | bi2anan9 596 | . . . . . 6 |
6 | 1, 2, 5 | syl2anc 409 | . . . . 5 |
7 | 6 | biimpd 143 | . . . 4 |
8 | reeanv 2623 | . . . 4 | |
9 | 7, 8 | syl6ibr 161 | . . 3 |
10 | dvds2lem.4 | . . . . 5 | |
11 | dvds2lem.5 | . . . . 5 | |
12 | oveq1 5821 | . . . . . . 7 | |
13 | 12 | eqeq1d 2163 | . . . . . 6 |
14 | 13 | rspcev 2813 | . . . . 5 |
15 | 10, 11, 14 | syl6an 1411 | . . . 4 |
16 | 15 | rexlimdvva 2579 | . . 3 |
17 | 9, 16 | syld 45 | . 2 |
18 | dvds2lem.3 | . . 3 | |
19 | divides 11662 | . . 3 | |
20 | 18, 19 | syl 14 | . 2 |
21 | 17, 20 | sylibrd 168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wrex 2433 class class class wbr 3961 (class class class)co 5814 cmul 7716 cz 9146 cdvds 11660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-iota 5128 df-fv 5171 df-ov 5817 df-dvds 11661 |
This theorem is referenced by: dvds2ln 11693 dvds2add 11694 dvds2sub 11695 dvdstr 11697 |
Copyright terms: Public domain | W3C validator |