| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvds2lem | Unicode version | ||
| Description: A lemma to assist
theorems of  | 
| Ref | Expression | 
|---|---|
| dvds2lem.1 | 
 | 
| dvds2lem.2 | 
 | 
| dvds2lem.3 | 
 | 
| dvds2lem.4 | 
 | 
| dvds2lem.5 | 
 | 
| Ref | Expression | 
|---|---|
| dvds2lem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvds2lem.1 | 
. . . . . 6
 | |
| 2 | dvds2lem.2 | 
. . . . . 6
 | |
| 3 | divides 11954 | 
. . . . . . 7
 | |
| 4 | divides 11954 | 
. . . . . . 7
 | |
| 5 | 3, 4 | bi2anan9 606 | 
. . . . . 6
 | 
| 6 | 1, 2, 5 | syl2anc 411 | 
. . . . 5
 | 
| 7 | 6 | biimpd 144 | 
. . . 4
 | 
| 8 | reeanv 2667 | 
. . . 4
 | |
| 9 | 7, 8 | imbitrrdi 162 | 
. . 3
 | 
| 10 | dvds2lem.4 | 
. . . . 5
 | |
| 11 | dvds2lem.5 | 
. . . . 5
 | |
| 12 | oveq1 5929 | 
. . . . . . 7
 | |
| 13 | 12 | eqeq1d 2205 | 
. . . . . 6
 | 
| 14 | 13 | rspcev 2868 | 
. . . . 5
 | 
| 15 | 10, 11, 14 | syl6an 1445 | 
. . . 4
 | 
| 16 | 15 | rexlimdvva 2622 | 
. . 3
 | 
| 17 | 9, 16 | syld 45 | 
. 2
 | 
| 18 | dvds2lem.3 | 
. . 3
 | |
| 19 | divides 11954 | 
. . 3
 | |
| 20 | 18, 19 | syl 14 | 
. 2
 | 
| 21 | 17, 20 | sylibrd 169 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-iota 5219 df-fv 5266 df-ov 5925 df-dvds 11953 | 
| This theorem is referenced by: dvds2ln 11989 dvds2add 11990 dvds2sub 11991 dvdstr 11993 | 
| Copyright terms: Public domain | W3C validator |