ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2lem Unicode version

Theorem dvds2lem 11946
Description: A lemma to assist theorems of  || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
dvds2lem.2  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
dvds2lem.3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds2lem.4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
dvds2lem.5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds2lem  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Distinct variable groups:    x, I, y   
x, J, y    x, K, y    x, L, y   
x, M, y    x, N, y    ph, x, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem dvds2lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
2 dvds2lem.2 . . . . . 6  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
3 divides 11932 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  ||  J  <->  E. x  e.  ZZ  (
x  x.  I )  =  J ) )
4 divides 11932 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  ||  L  <->  E. y  e.  ZZ  (
y  x.  K )  =  L ) )
53, 4bi2anan9 606 . . . . . 6  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
61, 2, 5syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
76biimpd 144 . . . 4  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  ( E. x  e.  ZZ  (
x  x.  I )  =  J  /\  E. y  e.  ZZ  (
y  x.  K )  =  L ) ) )
8 reeanv 2664 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  x.  I
)  =  J  /\  ( y  x.  K
)  =  L )  <-> 
( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) )
97, 8imbitrrdi 162 . . 3  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L ) ) )
10 dvds2lem.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
11 dvds2lem.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
12 oveq1 5925 . . . . . . 7  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
1312eqeq1d 2202 . . . . . 6  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
1413rspcev 2864 . . . . 5  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
1510, 11, 14syl6an 1445 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
1615rexlimdvva 2619 . . 3  |-  ( ph  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
179, 16syld 45 . 2  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
18 dvds2lem.3 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
19 divides 11932 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2018, 19syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2117, 20sylibrd 169 1  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918    x. cmul 7877   ZZcz 9317    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-iota 5215  df-fv 5262  df-ov 5921  df-dvds 11931
This theorem is referenced by:  dvds2ln  11967  dvds2add  11968  dvds2sub  11969  dvdstr  11971
  Copyright terms: Public domain W3C validator