ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem Unicode version

Theorem dvds1lem 11777
Description: A lemma to assist theorems of  || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
dvds1lem.2  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds1lem.3  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
dvds1lem.4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds1lem  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Distinct variable groups:    x, J    x, K    x, M    x, N    ph, x
Allowed substitution hint:    Z( x)

Proof of Theorem dvds1lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
2 dvds1lem.4 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
3 oveq1 5872 . . . . . 6  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
43eqeq1d 2184 . . . . 5  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
54rspcev 2839 . . . 4  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
61, 2, 5syl6an 1432 . . 3  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
76rexlimdva 2592 . 2  |-  ( ph  ->  ( E. x  e.  ZZ  ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N ) )
8 dvds1lem.1 . . 3  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
9 divides 11764 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
108, 9syl 14 . 2  |-  ( ph  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
11 dvds1lem.2 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
12 divides 11764 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
1311, 12syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
147, 10, 133imtr4d 203 1  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   E.wrex 2454   class class class wbr 3998  (class class class)co 5865    x. cmul 7791   ZZcz 9226    || cdvds 11762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-iota 5170  df-fv 5216  df-ov 5868  df-dvds 11763
This theorem is referenced by:  negdvdsb  11782  dvdsnegb  11783  muldvds1  11791  muldvds2  11792  dvdscmul  11793  dvdsmulc  11794  dvdscmulr  11795  dvdsmulcr  11796
  Copyright terms: Public domain W3C validator