ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem Unicode version

Theorem dvds1lem 11811
Description: A lemma to assist theorems of  || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
dvds1lem.2  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds1lem.3  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
dvds1lem.4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds1lem  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Distinct variable groups:    x, J    x, K    x, M    x, N    ph, x
Allowed substitution hint:    Z( x)

Proof of Theorem dvds1lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
2 dvds1lem.4 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
3 oveq1 5884 . . . . . 6  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
43eqeq1d 2186 . . . . 5  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
54rspcev 2843 . . . 4  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
61, 2, 5syl6an 1434 . . 3  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
76rexlimdva 2594 . 2  |-  ( ph  ->  ( E. x  e.  ZZ  ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N ) )
8 dvds1lem.1 . . 3  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
9 divides 11798 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
108, 9syl 14 . 2  |-  ( ph  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
11 dvds1lem.2 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
12 divides 11798 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
1311, 12syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
147, 10, 133imtr4d 203 1  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877    x. cmul 7818   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-iota 5180  df-fv 5226  df-ov 5880  df-dvds 11797
This theorem is referenced by:  negdvdsb  11816  dvdsnegb  11817  muldvds1  11825  muldvds2  11826  dvdscmul  11827  dvdsmulc  11828  dvdscmulr  11829  dvdsmulcr  11830
  Copyright terms: Public domain W3C validator