Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds1lem | Unicode version |
Description: A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds1lem.1 | |
dvds1lem.2 | |
dvds1lem.3 | |
dvds1lem.4 |
Ref | Expression |
---|---|
dvds1lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds1lem.3 | . . . 4 | |
2 | dvds1lem.4 | . . . 4 | |
3 | oveq1 5860 | . . . . . 6 | |
4 | 3 | eqeq1d 2179 | . . . . 5 |
5 | 4 | rspcev 2834 | . . . 4 |
6 | 1, 2, 5 | syl6an 1427 | . . 3 |
7 | 6 | rexlimdva 2587 | . 2 |
8 | dvds1lem.1 | . . 3 | |
9 | divides 11751 | . . 3 | |
10 | 8, 9 | syl 14 | . 2 |
11 | dvds1lem.2 | . . 3 | |
12 | divides 11751 | . . 3 | |
13 | 11, 12 | syl 14 | . 2 |
14 | 7, 10, 13 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 (class class class)co 5853 cmul 7779 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-iota 5160 df-fv 5206 df-ov 5856 df-dvds 11750 |
This theorem is referenced by: negdvdsb 11769 dvdsnegb 11770 muldvds1 11778 muldvds2 11779 dvdscmul 11780 dvdsmulc 11781 dvdscmulr 11782 dvdsmulcr 11783 |
Copyright terms: Public domain | W3C validator |