ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem Unicode version

Theorem dvds1lem 12188
Description: A lemma to assist theorems of  || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
dvds1lem.2  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds1lem.3  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
dvds1lem.4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds1lem  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Distinct variable groups:    x, J    x, K    x, M    x, N    ph, x
Allowed substitution hint:    Z( x)

Proof of Theorem dvds1lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
2 dvds1lem.4 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
3 oveq1 5964 . . . . . 6  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
43eqeq1d 2215 . . . . 5  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
54rspcev 2881 . . . 4  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
61, 2, 5syl6an 1454 . . 3  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
76rexlimdva 2624 . 2  |-  ( ph  ->  ( E. x  e.  ZZ  ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N ) )
8 dvds1lem.1 . . 3  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
9 divides 12175 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
108, 9syl 14 . 2  |-  ( ph  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
11 dvds1lem.2 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
12 divides 12175 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
1311, 12syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
147, 10, 133imtr4d 203 1  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4051  (class class class)co 5957    x. cmul 7950   ZZcz 9392    || cdvds 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-iota 5241  df-fv 5288  df-ov 5960  df-dvds 12174
This theorem is referenced by:  negdvdsb  12193  dvdsnegb  12194  muldvds1  12202  muldvds2  12203  dvdscmul  12204  dvdsmulc  12205  dvdscmulr  12206  dvdsmulcr  12207
  Copyright terms: Public domain W3C validator