ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2 GIF version

Theorem tfis2 4584
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2.2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2 (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜓
2 tfis2.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis2.2 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
41, 2, 3tfis2f 4583 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  wral 2455  Oncon0 4363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-in 3135  df-ss 3142  df-uni 3810  df-tr 4102  df-iord 4366  df-on 4368
This theorem is referenced by:  tfis3  4585  tfrlem1  6308  ordiso2  7033  exmidontriimlem4  7222  exmidontriim  7223
  Copyright terms: Public domain W3C validator