Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfis2 | GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
tfis2.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis2.2 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis2 | ⊢ (𝑥 ∈ On → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | tfis2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | tfis2.2 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
4 | 1, 2, 3 | tfis2f 4542 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2128 ∀wral 2435 Oncon0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 |
This theorem is referenced by: tfis3 4544 tfrlem1 6252 ordiso2 6973 exmidontriimlem4 7153 exmidontriim 7154 |
Copyright terms: Public domain | W3C validator |