![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfis2 | GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
tfis2.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis2.2 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis2 | ⊢ (𝑥 ∈ On → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1476 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | tfis2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | tfis2.2 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
4 | 1, 2, 3 | tfis2f 4436 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1448 ∀wral 2375 Oncon0 4223 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-setind 4390 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-in 3027 df-ss 3034 df-uni 3684 df-tr 3967 df-iord 4226 df-on 4228 |
This theorem is referenced by: tfis3 4438 tfrlem1 6135 ordiso2 6835 |
Copyright terms: Public domain | W3C validator |