ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2 GIF version

Theorem tfis2 4676
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2.2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2 (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1574 . 2 𝑥𝜓
2 tfis2.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis2.2 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
41, 2, 3tfis2f 4675 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200  wral 2508  Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by:  tfis3  4677  tfrlem1  6452  ordiso2  7198  exmidontriimlem4  7402  exmidontriim  7403
  Copyright terms: Public domain W3C validator