ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2 GIF version

Theorem tfis2 4543
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis2.2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis2 (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1508 . 2 𝑥𝜓
2 tfis2.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis2.2 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
41, 2, 3tfis2f 4542 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2128  wral 2435  Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328
This theorem is referenced by:  tfis3  4544  tfrlem1  6252  ordiso2  6973  exmidontriimlem4  7153  exmidontriim  7154
  Copyright terms: Public domain W3C validator