ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis3 Unicode version

Theorem tfis3 4539
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis3.2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
tfis3.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis3  |-  ( A  e.  On  ->  ch )
Distinct variable groups:    ps, x    ph, y    ch, x    x, A    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    A( y)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 tfis3.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 tfis3.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
42, 3tfis2 4538 . 2  |-  ( x  e.  On  ->  ph )
51, 4vtoclga 2775 1  |-  ( A  e.  On  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 2125   A.wral 2432   Oncon0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-in 3104  df-ss 3111  df-uni 3769  df-tr 4059  df-iord 4321  df-on 4323
This theorem is referenced by:  tfisi  4540  tfrlemi1  6269  tfr1onlemaccex  6285  tfrcllemaccex  6298  tfrcl  6301
  Copyright terms: Public domain W3C validator