ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis3 Unicode version

Theorem tfis3 4634
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis3.2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
tfis3.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis3  |-  ( A  e.  On  ->  ch )
Distinct variable groups:    ps, x    ph, y    ch, x    x, A    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    A( y)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 tfis3.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 tfis3.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
42, 3tfis2 4633 . 2  |-  ( x  e.  On  ->  ph )
51, 4vtoclga 2839 1  |-  ( A  e.  On  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  tfisi  4635  tfrlemi1  6418  tfr1onlemaccex  6434  tfrcllemaccex  6447  tfrcl  6450
  Copyright terms: Public domain W3C validator