ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis3 Unicode version

Theorem tfis3 4587
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis3.2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
tfis3.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis3  |-  ( A  e.  On  ->  ch )
Distinct variable groups:    ps, x    ph, y    ch, x    x, A    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    A( y)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
2 tfis3.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 tfis3.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
42, 3tfis2 4586 . 2  |-  ( x  e.  On  ->  ph )
51, 4vtoclga 2805 1  |-  ( A  e.  On  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370
This theorem is referenced by:  tfisi  4588  tfrlemi1  6335  tfr1onlemaccex  6351  tfrcllemaccex  6364  tfrcl  6367
  Copyright terms: Public domain W3C validator