Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfis3 | Unicode version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
Ref | Expression |
---|---|
tfis3.1 | |
tfis3.2 | |
tfis3.3 |
Ref | Expression |
---|---|
tfis3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis3.2 | . 2 | |
2 | tfis3.1 | . . 3 | |
3 | tfis3.3 | . . 3 | |
4 | 2, 3 | tfis2 4538 | . 2 |
5 | 1, 4 | vtoclga 2775 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wcel 2125 wral 2432 con0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-in 3104 df-ss 3111 df-uni 3769 df-tr 4059 df-iord 4321 df-on 4323 |
This theorem is referenced by: tfisi 4540 tfrlemi1 6269 tfr1onlemaccex 6285 tfrcllemaccex 6298 tfrcl 6301 |
Copyright terms: Public domain | W3C validator |