| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpss | GIF version | ||
| Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpss.1 | ⊢ 𝐴 ∈ V |
| tpss.2 | ⊢ 𝐵 ∈ V |
| tpss.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| tpss | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 3378 | . 2 ⊢ (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) | |
| 2 | df-3an 1004 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷)) | |
| 3 | tpss.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | tpss.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | prss 3823 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷) |
| 6 | tpss.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 7 | 6 | snss 3802 | . . . 4 ⊢ (𝐶 ∈ 𝐷 ↔ {𝐶} ⊆ 𝐷) |
| 8 | 5, 7 | anbi12i 460 | . . 3 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
| 9 | 2, 8 | bitri 184 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
| 10 | df-tp 3674 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 11 | 10 | sseq1i 3250 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
| 12 | 1, 9, 11 | 3bitr4i 212 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 {csn 3666 {cpr 3667 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |