ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovass Unicode version

Theorem caovass 5931
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1  |-  A  e. 
_V
caovass.2  |-  B  e. 
_V
caovass.3  |-  C  e. 
_V
caovass.4  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caovass  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2  |-  A  e. 
_V
2 caovass.2 . 2  |-  B  e. 
_V
3 caovass.3 . 2  |-  C  e. 
_V
4 tru 1335 . . 3  |- T.
5 caovass.4 . . . . 5  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
65a1i 9 . . . 4  |-  ( ( T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
76caovassg 5929 . . 3  |-  ( ( T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
84, 7mpan 420 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
91, 2, 3, 8mp3an 1315 1  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 962    = wceq 1331   T. wtru 1332    e. wcel 1480   _Vcvv 2686  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  caov32  5958  caov12  5959  caov31  5960  caov13  5961
  Copyright terms: Public domain W3C validator