Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovass | Unicode version |
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
Ref | Expression |
---|---|
caovass.1 | |
caovass.2 | |
caovass.3 | |
caovass.4 |
Ref | Expression |
---|---|
caovass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovass.1 | . 2 | |
2 | caovass.2 | . 2 | |
3 | caovass.3 | . 2 | |
4 | tru 1347 | . . 3 | |
5 | caovass.4 | . . . . 5 | |
6 | 5 | a1i 9 | . . . 4 |
7 | 6 | caovassg 5996 | . . 3 |
8 | 4, 7 | mpan 421 | . 2 |
9 | 1, 2, 3, 8 | mp3an 1327 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 w3a 968 wceq 1343 wtru 1344 wcel 2136 cvv 2725 (class class class)co 5841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: caov32 6025 caov12 6026 caov31 6027 caov13 6028 |
Copyright terms: Public domain | W3C validator |