Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovass | Unicode version |
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
Ref | Expression |
---|---|
caovass.1 | |
caovass.2 | |
caovass.3 | |
caovass.4 |
Ref | Expression |
---|---|
caovass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovass.1 | . 2 | |
2 | caovass.2 | . 2 | |
3 | caovass.3 | . 2 | |
4 | tru 1339 | . . 3 | |
5 | caovass.4 | . . . . 5 | |
6 | 5 | a1i 9 | . . . 4 |
7 | 6 | caovassg 5979 | . . 3 |
8 | 4, 7 | mpan 421 | . 2 |
9 | 1, 2, 3, 8 | mp3an 1319 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 w3a 963 wceq 1335 wtru 1336 wcel 2128 cvv 2712 (class class class)co 5824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5135 df-fv 5178 df-ov 5827 |
This theorem is referenced by: caov32 6008 caov12 6009 caov31 6010 caov13 6011 |
Copyright terms: Public domain | W3C validator |