ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovass Unicode version

Theorem caovass 6037
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1  |-  A  e. 
_V
caovass.2  |-  B  e. 
_V
caovass.3  |-  C  e. 
_V
caovass.4  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caovass  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2  |-  A  e. 
_V
2 caovass.2 . 2  |-  B  e. 
_V
3 caovass.3 . 2  |-  C  e. 
_V
4 tru 1357 . . 3  |- T.
5 caovass.4 . . . . 5  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
65a1i 9 . . . 4  |-  ( ( T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
76caovassg 6035 . . 3  |-  ( ( T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
84, 7mpan 424 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
91, 2, 3, 8mp3an 1337 1  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 978    = wceq 1353   T. wtru 1354    e. wcel 2148   _Vcvv 2739  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  caov32  6064  caov12  6065  caov31  6066  caov13  6067
  Copyright terms: Public domain W3C validator