ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcl Unicode version

Theorem caovcl 6078
Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovcl.1  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
Assertion
Ref Expression
caovcl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Distinct variable groups:    x, y, A   
y, B    x, F, y    x, S, y
Allowed substitution hint:    B( x)

Proof of Theorem caovcl
StepHypRef Expression
1 tru 1368 . 2  |- T.
2 caovcl.1 . . . 4  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
32adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
43caovclg 6076 . 2  |-  ( ( T.  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  e.  S )
51, 4mpan 424 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   T. wtru 1365    e. wcel 2167  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  ecopovtrn  6691  ecopovtrng  6694  genpelvl  7579  genpelvu  7580  genpml  7584  genpmu  7585  genprndl  7588  genprndu  7589  genpassl  7591  genpassu  7592  genpassg  7593  expcllem  10642
  Copyright terms: Public domain W3C validator