ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcl Unicode version

Theorem caovcl 6031
Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovcl.1  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
Assertion
Ref Expression
caovcl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Distinct variable groups:    x, y, A   
y, B    x, F, y    x, S, y
Allowed substitution hint:    B( x)

Proof of Theorem caovcl
StepHypRef Expression
1 tru 1357 . 2  |- T.
2 caovcl.1 . . . 4  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
32adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
43caovclg 6029 . 2  |-  ( ( T.  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  e.  S )
51, 4mpan 424 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   T. wtru 1354    e. wcel 2148  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  ecopovtrn  6634  ecopovtrng  6637  genpelvl  7513  genpelvu  7514  genpml  7518  genpmu  7519  genprndl  7522  genprndu  7523  genpassl  7525  genpassu  7526  genpassg  7527  expcllem  10533
  Copyright terms: Public domain W3C validator