Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcl | Unicode version |
Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
Ref | Expression |
---|---|
caovcl.1 |
Ref | Expression |
---|---|
caovcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 | . 2 | |
2 | caovcl.1 | . . . 4 | |
3 | 2 | adantl 277 | . . 3 |
4 | 3 | caovclg 6017 | . 2 |
5 | 1, 4 | mpan 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wtru 1354 wcel 2146 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: ecopovtrn 6622 ecopovtrng 6625 genpelvl 7486 genpelvu 7487 genpml 7491 genpmu 7492 genprndl 7495 genprndu 7496 genpassl 7498 genpassu 7499 genpassg 7500 expcllem 10501 |
Copyright terms: Public domain | W3C validator |