| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabrex | Unicode version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| elabrex.1 |
|
| Ref | Expression |
|---|---|
| elabrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1399 |
. . . 4
| |
| 2 | csbeq1a 3133 |
. . . . . . 7
| |
| 3 | 2 | equcoms 1754 |
. . . . . 6
|
| 4 | trud 1411 |
. . . . . 6
| |
| 5 | 3, 4 | 2thd 175 |
. . . . 5
|
| 6 | 5 | rspcev 2907 |
. . . 4
|
| 7 | 1, 6 | mpan2 425 |
. . 3
|
| 8 | elabrex.1 |
. . . 4
| |
| 9 | eqeq1 2236 |
. . . . 5
| |
| 10 | 9 | rexbidv 2531 |
. . . 4
|
| 11 | 8, 10 | elab 2947 |
. . 3
|
| 12 | 7, 11 | sylibr 134 |
. 2
|
| 13 | nfv 1574 |
. . . 4
| |
| 14 | nfcsb1v 3157 |
. . . . 5
| |
| 15 | 14 | nfeq2 2384 |
. . . 4
|
| 16 | 2 | eqeq2d 2241 |
. . . 4
|
| 17 | 13, 15, 16 | cbvrex 2762 |
. . 3
|
| 18 | 17 | abbii 2345 |
. 2
|
| 19 | 12, 18 | eleqtrrdi 2323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: eusvobj2 5980 |
| Copyright terms: Public domain | W3C validator |