ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrex Unicode version

Theorem elabrex 5737
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1  |-  B  e. 
_V
Assertion
Ref Expression
elabrex  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    y, B    x, y, A
Allowed substitution hint:    B( x)

Proof of Theorem elabrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1352 . . . 4  |- T.
2 csbeq1a 3058 . . . . . . 7  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1701 . . . . . 6  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 a1tru 1364 . . . . . 6  |-  ( z  =  x  -> T.  )
53, 42thd 174 . . . . 5  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 2834 . . . 4  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 423 . . 3  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
8 elabrex.1 . . . 4  |-  B  e. 
_V
9 eqeq1 2177 . . . . 5  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 2471 . . . 4  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
118, 10elab 2874 . . 3  |-  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
127, 11sylibr 133 . 2  |-  ( x  e.  A  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
13 nfv 1521 . . . 4  |-  F/ z  y  =  B
14 nfcsb1v 3082 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1514nfeq2 2324 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
162eqeq2d 2182 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1713, 15, 16cbvrex 2693 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1817abbii 2286 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
1912, 18eleqtrrdi 2264 1  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   T. wtru 1349    e. wcel 2141   {cab 2156   E.wrex 2449   _Vcvv 2730   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  eusvobj2  5839
  Copyright terms: Public domain W3C validator