ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdi Unicode version

Theorem caovdi 6021
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
Hypotheses
Ref Expression
caovdi.1  |-  A  e. 
_V
caovdi.2  |-  B  e. 
_V
caovdi.3  |-  C  e. 
_V
caovdi.4  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdi  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdi
StepHypRef Expression
1 caovdi.1 . 2  |-  A  e. 
_V
2 caovdi.2 . 2  |-  B  e. 
_V
3 caovdi.3 . 2  |-  C  e. 
_V
4 tru 1347 . . 3  |- T.
5 caovdi.4 . . . . 5  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
65a1i 9 . . . 4  |-  ( ( T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )
76caovdig 6016 . . 3  |-  ( ( T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
84, 7mpan 421 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
91, 2, 3, 8mp3an 1327 1  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 968    = wceq 1343   T. wtru 1344    e. wcel 2136   _Vcvv 2726  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator