| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisn | Unicode version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 |
|
| Ref | Expression |
|---|---|
| unisn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3647 |
. . 3
| |
| 2 | 1 | unieqi 3860 |
. 2
|
| 3 | unisn.1 |
. . 3
| |
| 4 | 3, 3 | unipr 3864 |
. 2
|
| 5 | unidm 3316 |
. 2
| |
| 6 | 2, 4, 5 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 |
| This theorem is referenced by: unisng 3867 uniintsnr 3921 unisuc 4460 op1sta 5164 op2nda 5167 elxp4 5170 uniabio 5242 iotass 5249 en1bg 6892 zrhval2 14381 |
| Copyright terms: Public domain | W3C validator |