| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisn | Unicode version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 |
|
| Ref | Expression |
|---|---|
| unisn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3646 |
. . 3
| |
| 2 | 1 | unieqi 3859 |
. 2
|
| 3 | unisn.1 |
. . 3
| |
| 4 | 3, 3 | unipr 3863 |
. 2
|
| 5 | unidm 3315 |
. 2
| |
| 6 | 2, 4, 5 | 3eqtri 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 |
| This theorem is referenced by: unisng 3866 uniintsnr 3920 unisuc 4459 op1sta 5163 op2nda 5166 elxp4 5169 uniabio 5241 iotass 5248 en1bg 6891 zrhval2 14352 |
| Copyright terms: Public domain | W3C validator |