ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn Unicode version

Theorem unisn 3880
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1  |-  A  e. 
_V
Assertion
Ref Expression
unisn  |-  U. { A }  =  A

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3657 . . 3  |-  { A }  =  { A ,  A }
21unieqi 3874 . 2  |-  U. { A }  =  U. { A ,  A }
3 unisn.1 . . 3  |-  A  e. 
_V
43, 3unipr 3878 . 2  |-  U. { A ,  A }  =  ( A  u.  A )
5 unidm 3324 . 2  |-  ( A  u.  A )  =  A
62, 4, 53eqtri 2232 1  |-  U. { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172   {csn 3643   {cpr 3644   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865
This theorem is referenced by:  unisng  3881  uniintsnr  3935  unisuc  4478  op1sta  5183  op2nda  5186  elxp4  5189  uniabio  5261  iotass  5268  en1bg  6915  zrhval2  14496
  Copyright terms: Public domain W3C validator