ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd Unicode version

Theorem unissd 3874
Description: Subclass relationship for subclass union. Deduction form of uniss 3871. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
unissd  |-  ( ph  ->  U. A  C_  U. B
)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2  |-  ( ph  ->  A  C_  B )
2 uniss 3871 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2syl 14 1  |-  ( ph  ->  U. A  C_  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851
This theorem is referenced by:  iotanul  5247  tfrlemibfn  6414  tfrlemiubacc  6416  tfr1onlemssrecs  6425  tfr1onlembfn  6430  tfr1onlemubacc  6432  tfrcllemssrecs  6438  tfrcllembfn  6443  tfrcllemubacc  6445  fiuni  7080  eltg3i  14528  unitg  14534  tgss  14535  ntrss  14591
  Copyright terms: Public domain W3C validator