ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd Unicode version

Theorem unissd 3796
Description: Subclass relationship for subclass union. Deduction form of uniss 3793. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
unissd  |-  ( ph  ->  U. A  C_  U. B
)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2  |-  ( ph  ->  A  C_  B )
2 uniss 3793 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2syl 14 1  |-  ( ph  ->  U. A  C_  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3102   U.cuni 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773
This theorem is referenced by:  iotanul  5147  tfrlemibfn  6269  tfrlemiubacc  6271  tfr1onlemssrecs  6280  tfr1onlembfn  6285  tfr1onlemubacc  6287  tfrcllemssrecs  6293  tfrcllembfn  6298  tfrcllemubacc  6300  fiuni  6915  eltg3i  12416  unitg  12422  tgss  12423  ntrss  12479
  Copyright terms: Public domain W3C validator