| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unixpss | Unicode version | ||
| Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixpss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4791 |
. . . . 5
| |
| 2 | 1 | unissi 3875 |
. . . 4
|
| 3 | unipw 4265 |
. . . 4
| |
| 4 | 2, 3 | sseqtri 3228 |
. . 3
|
| 5 | 4 | unissi 3875 |
. 2
|
| 6 | unipw 4265 |
. 2
| |
| 7 | 5, 6 | sseqtri 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-opab 4110 df-xp 4685 |
| This theorem is referenced by: relfld 5216 |
| Copyright terms: Public domain | W3C validator |