ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4738
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4737 . . . . 5  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
21unissi 3832 . . . 4  |-  U. ( A  X.  B )  C_  U. ~P ~P ( A  u.  B )
3 unipw 4216 . . . 4  |-  U. ~P ~P ( A  u.  B
)  =  ~P ( A  u.  B )
42, 3sseqtri 3189 . . 3  |-  U. ( A  X.  B )  C_  ~P ( A  u.  B
)
54unissi 3832 . 2  |-  U. U. ( A  X.  B
)  C_  U. ~P ( A  u.  B )
6 unipw 4216 . 2  |-  U. ~P ( A  u.  B
)  =  ( A  u.  B )
75, 6sseqtri 3189 1  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    u. cun 3127    C_ wss 3129   ~Pcpw 3575   U.cuni 3809    X. cxp 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-opab 4064  df-xp 4631
This theorem is referenced by:  relfld  5156
  Copyright terms: Public domain W3C validator