Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4652
 Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4651 . . . . 5
21unissi 3759 . . . 4
3 unipw 4139 . . . 4
42, 3sseqtri 3131 . . 3
54unissi 3759 . 2
6 unipw 4139 . 2
75, 6sseqtri 3131 1
 Colors of variables: wff set class Syntax hints:   cun 3069   wss 3071  cpw 3510  cuni 3736   cxp 4537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-opab 3990  df-xp 4545 This theorem is referenced by:  relfld  5067
 Copyright terms: Public domain W3C validator