ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4776
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4775 . . . . 5  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
21unissi 3862 . . . 4  |-  U. ( A  X.  B )  C_  U. ~P ~P ( A  u.  B )
3 unipw 4250 . . . 4  |-  U. ~P ~P ( A  u.  B
)  =  ~P ( A  u.  B )
42, 3sseqtri 3217 . . 3  |-  U. ( A  X.  B )  C_  ~P ( A  u.  B
)
54unissi 3862 . 2  |-  U. U. ( A  X.  B
)  C_  U. ~P ( A  u.  B )
6 unipw 4250 . 2  |-  U. ~P ( A  u.  B
)  =  ( A  u.  B )
75, 6sseqtri 3217 1  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    u. cun 3155    C_ wss 3157   ~Pcpw 3605   U.cuni 3839    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-opab 4095  df-xp 4669
This theorem is referenced by:  relfld  5198
  Copyright terms: Public domain W3C validator