ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4773
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4772 . . . . 5  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
21unissi 3859 . . . 4  |-  U. ( A  X.  B )  C_  U. ~P ~P ( A  u.  B )
3 unipw 4247 . . . 4  |-  U. ~P ~P ( A  u.  B
)  =  ~P ( A  u.  B )
42, 3sseqtri 3214 . . 3  |-  U. ( A  X.  B )  C_  ~P ( A  u.  B
)
54unissi 3859 . 2  |-  U. U. ( A  X.  B
)  C_  U. ~P ( A  u.  B )
6 unipw 4247 . 2  |-  U. ~P ( A  u.  B
)  =  ( A  u.  B )
75, 6sseqtri 3214 1  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    u. cun 3152    C_ wss 3154   ~Pcpw 3602   U.cuni 3836    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-opab 4092  df-xp 4666
This theorem is referenced by:  relfld  5195
  Copyright terms: Public domain W3C validator