ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4792
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4791 . . . . 5  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
21unissi 3875 . . . 4  |-  U. ( A  X.  B )  C_  U. ~P ~P ( A  u.  B )
3 unipw 4265 . . . 4  |-  U. ~P ~P ( A  u.  B
)  =  ~P ( A  u.  B )
42, 3sseqtri 3228 . . 3  |-  U. ( A  X.  B )  C_  ~P ( A  u.  B
)
54unissi 3875 . 2  |-  U. U. ( A  X.  B
)  C_  U. ~P ( A  u.  B )
6 unipw 4265 . 2  |-  U. ~P ( A  u.  B
)  =  ( A  u.  B )
75, 6sseqtri 3228 1  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    u. cun 3165    C_ wss 3167   ~Pcpw 3617   U.cuni 3852    X. cxp 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-opab 4110  df-xp 4685
This theorem is referenced by:  relfld  5216
  Copyright terms: Public domain W3C validator