ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4831
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4830 . . . . 5  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
21unissi 3910 . . . 4  |-  U. ( A  X.  B )  C_  U. ~P ~P ( A  u.  B )
3 unipw 4302 . . . 4  |-  U. ~P ~P ( A  u.  B
)  =  ~P ( A  u.  B )
42, 3sseqtri 3258 . . 3  |-  U. ( A  X.  B )  C_  ~P ( A  u.  B
)
54unissi 3910 . 2  |-  U. U. ( A  X.  B
)  C_  U. ~P ( A  u.  B )
6 unipw 4302 . 2  |-  U. ~P ( A  u.  B
)  =  ( A  u.  B )
75, 6sseqtri 3258 1  |-  U. U. ( A  X.  B
)  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   ~Pcpw 3649   U.cuni 3887    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-opab 4145  df-xp 4724
This theorem is referenced by:  relfld  5256
  Copyright terms: Public domain W3C validator