ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i Unicode version

Theorem eltg4i 14223
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )

Proof of Theorem eltg4i
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 12871 . . . . . . 7  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5293 . . . . . 6  |-  Fun  topGen
3 funrel 5271 . . . . . 6  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . . 5  |-  Rel  topGen
5 relelfvdm 5586 . . . . 5  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 424 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg 14220 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
86, 7syl 14 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( A  e.  ( topGen `  B )  <->  A 
C_  U. ( B  i^i  ~P A ) ) )
98ibi 176 . 2  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. ( B  i^i  ~P A ) )
10 inss2 3380 . . . . 5  |-  ( B  i^i  ~P A ) 
C_  ~P A
1110unissi 3858 . . . 4  |-  U. ( B  i^i  ~P A ) 
C_  U. ~P A
12 unipw 4246 . . . 4  |-  U. ~P A  =  A
1311, 12sseqtri 3213 . . 3  |-  U. ( B  i^i  ~P A ) 
C_  A
1413a1i 9 . 2  |-  ( A  e.  ( topGen `  B
)  ->  U. ( B  i^i  ~P A ) 
C_  A )
159, 14eqssd 3196 1  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    i^i cin 3152    C_ wss 3153   ~Pcpw 3601   U.cuni 3835   dom cdm 4659   Rel wrel 4664   Fun wfun 5248   ` cfv 5254   topGenctg 12865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topgen 12871
This theorem is referenced by:  eltg3  14225  tgdom  14240  tgidm  14242
  Copyright terms: Public domain W3C validator