Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltg4i | Unicode version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topgen 12577 | . . . . . . 7 | |
2 | 1 | funmpt2 5227 | . . . . . 6 |
3 | funrel 5205 | . . . . . 6 | |
4 | 2, 3 | ax-mp 5 | . . . . 5 |
5 | relelfvdm 5518 | . . . . 5 | |
6 | 4, 5 | mpan 421 | . . . 4 |
7 | eltg 12692 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 8 | ibi 175 | . 2 |
10 | inss2 3343 | . . . . 5 | |
11 | 10 | unissi 3812 | . . . 4 |
12 | unipw 4195 | . . . 4 | |
13 | 11, 12 | sseqtri 3176 | . . 3 |
14 | 13 | a1i 9 | . 2 |
15 | 9, 14 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cab 2151 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 cdm 4604 wrel 4609 wfun 5182 cfv 5188 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: eltg3 12697 tgdom 12712 tgidm 12714 |
Copyright terms: Public domain | W3C validator |