ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i Unicode version

Theorem eltg4i 12695
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )

Proof of Theorem eltg4i
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 12577 . . . . . . 7  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5227 . . . . . 6  |-  Fun  topGen
3 funrel 5205 . . . . . 6  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . . 5  |-  Rel  topGen
5 relelfvdm 5518 . . . . 5  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 421 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg 12692 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
86, 7syl 14 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( A  e.  ( topGen `  B )  <->  A 
C_  U. ( B  i^i  ~P A ) ) )
98ibi 175 . 2  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. ( B  i^i  ~P A ) )
10 inss2 3343 . . . . 5  |-  ( B  i^i  ~P A ) 
C_  ~P A
1110unissi 3812 . . . 4  |-  U. ( B  i^i  ~P A ) 
C_  U. ~P A
12 unipw 4195 . . . 4  |-  U. ~P A  =  A
1311, 12sseqtri 3176 . . 3  |-  U. ( B  i^i  ~P A ) 
C_  A
1413a1i 9 . 2  |-  ( A  e.  ( topGen `  B
)  ->  U. ( B  i^i  ~P A ) 
C_  A )
159, 14eqssd 3159 1  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   dom cdm 4604   Rel wrel 4609   Fun wfun 5182   ` cfv 5188   topGenctg 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topgen 12577
This theorem is referenced by:  eltg3  12697  tgdom  12712  tgidm  12714
  Copyright terms: Public domain W3C validator