ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg4i Unicode version

Theorem eltg4i 14729
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )

Proof of Theorem eltg4i
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-topgen 13293 . . . . . . 7  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
21funmpt2 5357 . . . . . 6  |-  Fun  topGen
3 funrel 5335 . . . . . 6  |-  ( Fun  topGen  ->  Rel  topGen )
42, 3ax-mp 5 . . . . 5  |-  Rel  topGen
5 relelfvdm 5659 . . . . 5  |-  ( ( Rel  topGen  /\  A  e.  ( topGen `  B )
)  ->  B  e.  dom  topGen )
64, 5mpan 424 . . . 4  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
7 eltg 14726 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
86, 7syl 14 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  ( A  e.  ( topGen `  B )  <->  A 
C_  U. ( B  i^i  ~P A ) ) )
98ibi 176 . 2  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. ( B  i^i  ~P A ) )
10 inss2 3425 . . . . 5  |-  ( B  i^i  ~P A ) 
C_  ~P A
1110unissi 3911 . . . 4  |-  U. ( B  i^i  ~P A ) 
C_  U. ~P A
12 unipw 4303 . . . 4  |-  U. ~P A  =  A
1311, 12sseqtri 3258 . . 3  |-  U. ( B  i^i  ~P A ) 
C_  A
1413a1i 9 . 2  |-  ( A  e.  ( topGen `  B
)  ->  U. ( B  i^i  ~P A ) 
C_  A )
159, 14eqssd 3241 1  |-  ( A  e.  ( topGen `  B
)  ->  A  =  U. ( B  i^i  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   dom cdm 4719   Rel wrel 4724   Fun wfun 5312   ` cfv 5318   topGenctg 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293
This theorem is referenced by:  eltg3  14731  tgdom  14746  tgidm  14748
  Copyright terms: Public domain W3C validator