ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval2 Unicode version

Theorem tgval2 14725
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14738) that  ( topGen `  B ) is indeed a topology (on  U. B, see unitg 14736). See also tgval 13295 and tgval3 14732. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Distinct variable groups:    x, y, z, B    x, V, y, z

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 13295 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
2 inss1 3424 . . . . . . . . 9  |-  ( B  i^i  ~P x ) 
C_  B
32unissi 3911 . . . . . . . 8  |-  U. ( B  i^i  ~P x ) 
C_  U. B
43sseli 3220 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  ->  y  e.  U. B )
54pm4.71ri 392 . . . . . 6  |-  ( y  e.  U. ( B  i^i  ~P x )  <-> 
( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x
) ) )
65ralbii 2536 . . . . 5  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  A. y  e.  x  ( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) ) )
7 r19.26 2657 . . . . 5  |-  ( A. y  e.  x  (
y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
86, 7bitri 184 . . . 4  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
9 dfss3 3213 . . . 4  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
10 dfss3 3213 . . . . 5  |-  ( x 
C_  U. B  <->  A. y  e.  x  y  e.  U. B )
11 elin 3387 . . . . . . . . . . 11  |-  ( z  e.  ( B  i^i  ~P x )  <->  ( z  e.  B  /\  z  e.  ~P x ) )
1211anbi2i 457 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( y  e.  z  /\  ( z  e.  B  /\  z  e. 
~P x ) ) )
13 an12 561 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  ( z  e.  B  /\  z  e.  ~P x ) )  <->  ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1412, 13bitri 184 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
1514exbii 1651 . . . . . . . 8  |-  ( E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <->  E. z
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
16 eluni 3891 . . . . . . . 8  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) ) )
17 df-rex 2514 . . . . . . . 8  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1815, 16, 173bitr4i 212 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x ) )
19 velpw 3656 . . . . . . . . 9  |-  ( z  e.  ~P x  <->  z  C_  x )
2019anbi2i 457 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ~P x
)  <->  ( y  e.  z  /\  z  C_  x ) )
2120rexbii 2537 . . . . . . 7  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z  e.  B  ( y  e.  z  /\  z  C_  x
) )
2218, 21bitr2i 185 . . . . . 6  |-  ( E. z  e.  B  ( y  e.  z  /\  z  C_  x )  <->  y  e.  U. ( B  i^i  ~P x ) )
2322ralbii 2536 . . . . 5  |-  ( A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
2410, 23anbi12i 460 . . . 4  |-  ( ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  <-> 
( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x
) ) )
258, 9, 243bitr4i 212 . . 3  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  ( x  C_ 
U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) )
2625abbii 2345 . 2  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) }
271, 26eqtrdi 2278 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   ` cfv 5318   topGenctg 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293
This theorem is referenced by:  eltg2  14727
  Copyright terms: Public domain W3C validator