ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgval2 Unicode version

Theorem tgval2 12229
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 12242) that  ( topGen `  B ) is indeed a topology (on  U. B, see unitg 12240). See also tgval 12227 and tgval3 12236. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Distinct variable groups:    x, y, z, B    x, V, y, z

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 12227 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
2 inss1 3296 . . . . . . . . 9  |-  ( B  i^i  ~P x ) 
C_  B
32unissi 3759 . . . . . . . 8  |-  U. ( B  i^i  ~P x ) 
C_  U. B
43sseli 3093 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  ->  y  e.  U. B )
54pm4.71ri 389 . . . . . 6  |-  ( y  e.  U. ( B  i^i  ~P x )  <-> 
( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x
) ) )
65ralbii 2441 . . . . 5  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  A. y  e.  x  ( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) ) )
7 r19.26 2558 . . . . 5  |-  ( A. y  e.  x  (
y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
86, 7bitri 183 . . . 4  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
9 dfss3 3087 . . . 4  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
10 dfss3 3087 . . . . 5  |-  ( x 
C_  U. B  <->  A. y  e.  x  y  e.  U. B )
11 elin 3259 . . . . . . . . . . 11  |-  ( z  e.  ( B  i^i  ~P x )  <->  ( z  e.  B  /\  z  e.  ~P x ) )
1211anbi2i 452 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( y  e.  z  /\  ( z  e.  B  /\  z  e. 
~P x ) ) )
13 an12 550 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  ( z  e.  B  /\  z  e.  ~P x ) )  <->  ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1412, 13bitri 183 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
1514exbii 1584 . . . . . . . 8  |-  ( E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <->  E. z
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
16 eluni 3739 . . . . . . . 8  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) ) )
17 df-rex 2422 . . . . . . . 8  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1815, 16, 173bitr4i 211 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x ) )
19 velpw 3517 . . . . . . . . 9  |-  ( z  e.  ~P x  <->  z  C_  x )
2019anbi2i 452 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ~P x
)  <->  ( y  e.  z  /\  z  C_  x ) )
2120rexbii 2442 . . . . . . 7  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z  e.  B  ( y  e.  z  /\  z  C_  x
) )
2218, 21bitr2i 184 . . . . . 6  |-  ( E. z  e.  B  ( y  e.  z  /\  z  C_  x )  <->  y  e.  U. ( B  i^i  ~P x ) )
2322ralbii 2441 . . . . 5  |-  ( A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
2410, 23anbi12i 455 . . . 4  |-  ( ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  <-> 
( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x
) ) )
258, 9, 243bitr4i 211 . . 3  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  ( x  C_ 
U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) )
2625abbii 2255 . 2  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) }
271, 26syl6eq 2188 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417    i^i cin 3070    C_ wss 3071   ~Pcpw 3510   U.cuni 3736   ` cfv 5123   topGenctg 12144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-topgen 12150
This theorem is referenced by:  eltg2  12231
  Copyright terms: Public domain W3C validator