Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgval2 | Unicode version |
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 12858) that is indeed a topology (on , see unitg 12856). See also tgval 12843 and tgval3 12852. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval 12843 | . 2 | |
2 | inss1 3347 | . . . . . . . . 9 | |
3 | 2 | unissi 3819 | . . . . . . . 8 |
4 | 3 | sseli 3143 | . . . . . . 7 |
5 | 4 | pm4.71ri 390 | . . . . . 6 |
6 | 5 | ralbii 2476 | . . . . 5 |
7 | r19.26 2596 | . . . . 5 | |
8 | 6, 7 | bitri 183 | . . . 4 |
9 | dfss3 3137 | . . . 4 | |
10 | dfss3 3137 | . . . . 5 | |
11 | elin 3310 | . . . . . . . . . . 11 | |
12 | 11 | anbi2i 454 | . . . . . . . . . 10 |
13 | an12 556 | . . . . . . . . . 10 | |
14 | 12, 13 | bitri 183 | . . . . . . . . 9 |
15 | 14 | exbii 1598 | . . . . . . . 8 |
16 | eluni 3799 | . . . . . . . 8 | |
17 | df-rex 2454 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3bitr4i 211 | . . . . . . 7 |
19 | velpw 3573 | . . . . . . . . 9 | |
20 | 19 | anbi2i 454 | . . . . . . . 8 |
21 | 20 | rexbii 2477 | . . . . . . 7 |
22 | 18, 21 | bitr2i 184 | . . . . . 6 |
23 | 22 | ralbii 2476 | . . . . 5 |
24 | 10, 23 | anbi12i 457 | . . . 4 |
25 | 8, 9, 24 | 3bitr4i 211 | . . 3 |
26 | 25 | abbii 2286 | . 2 |
27 | 1, 26 | eqtrdi 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 wral 2448 wrex 2449 cin 3120 wss 3121 cpw 3566 cuni 3796 cfv 5198 ctg 12594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topgen 12600 |
This theorem is referenced by: eltg2 12847 |
Copyright terms: Public domain | W3C validator |