Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgval2 | Unicode version |
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 12704) that is indeed a topology (on , see unitg 12702). See also tgval 12689 and tgval3 12698. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval 12689 | . 2 | |
2 | inss1 3342 | . . . . . . . . 9 | |
3 | 2 | unissi 3812 | . . . . . . . 8 |
4 | 3 | sseli 3138 | . . . . . . 7 |
5 | 4 | pm4.71ri 390 | . . . . . 6 |
6 | 5 | ralbii 2472 | . . . . 5 |
7 | r19.26 2592 | . . . . 5 | |
8 | 6, 7 | bitri 183 | . . . 4 |
9 | dfss3 3132 | . . . 4 | |
10 | dfss3 3132 | . . . . 5 | |
11 | elin 3305 | . . . . . . . . . . 11 | |
12 | 11 | anbi2i 453 | . . . . . . . . . 10 |
13 | an12 551 | . . . . . . . . . 10 | |
14 | 12, 13 | bitri 183 | . . . . . . . . 9 |
15 | 14 | exbii 1593 | . . . . . . . 8 |
16 | eluni 3792 | . . . . . . . 8 | |
17 | df-rex 2450 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3bitr4i 211 | . . . . . . 7 |
19 | velpw 3566 | . . . . . . . . 9 | |
20 | 19 | anbi2i 453 | . . . . . . . 8 |
21 | 20 | rexbii 2473 | . . . . . . 7 |
22 | 18, 21 | bitr2i 184 | . . . . . 6 |
23 | 22 | ralbii 2472 | . . . . 5 |
24 | 10, 23 | anbi12i 456 | . . . 4 |
25 | 8, 9, 24 | 3bitr4i 211 | . . 3 |
26 | 25 | abbii 2282 | . 2 |
27 | 1, 26 | eqtrdi 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 wrex 2445 cin 3115 wss 3116 cpw 3559 cuni 3789 cfv 5188 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: eltg2 12693 |
Copyright terms: Public domain | W3C validator |