| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgval2 | Unicode version | ||
| Description: Definition of a topology
generated by a basis in [Munkres] p. 78. Later
we show (in tgcl 14651) that |
| Ref | Expression |
|---|---|
| tgval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 13209 |
. 2
| |
| 2 | inss1 3401 |
. . . . . . . . 9
| |
| 3 | 2 | unissi 3887 |
. . . . . . . 8
|
| 4 | 3 | sseli 3197 |
. . . . . . 7
|
| 5 | 4 | pm4.71ri 392 |
. . . . . 6
|
| 6 | 5 | ralbii 2514 |
. . . . 5
|
| 7 | r19.26 2634 |
. . . . 5
| |
| 8 | 6, 7 | bitri 184 |
. . . 4
|
| 9 | dfss3 3190 |
. . . 4
| |
| 10 | dfss3 3190 |
. . . . 5
| |
| 11 | elin 3364 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi2i 457 |
. . . . . . . . . 10
|
| 13 | an12 561 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 184 |
. . . . . . . . 9
|
| 15 | 14 | exbii 1629 |
. . . . . . . 8
|
| 16 | eluni 3867 |
. . . . . . . 8
| |
| 17 | df-rex 2492 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
. . . . . . 7
|
| 19 | velpw 3633 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2i 457 |
. . . . . . . 8
|
| 21 | 20 | rexbii 2515 |
. . . . . . 7
|
| 22 | 18, 21 | bitr2i 185 |
. . . . . 6
|
| 23 | 22 | ralbii 2514 |
. . . . 5
|
| 24 | 10, 23 | anbi12i 460 |
. . . 4
|
| 25 | 8, 9, 24 | 3bitr4i 212 |
. . 3
|
| 26 | 25 | abbii 2323 |
. 2
|
| 27 | 1, 26 | eqtrdi 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topgen 13207 |
| This theorem is referenced by: eltg2 14640 |
| Copyright terms: Public domain | W3C validator |