| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgval2 | Unicode version | ||
| Description: Definition of a topology
generated by a basis in [Munkres] p. 78. Later
we show (in tgcl 14300) that |
| Ref | Expression |
|---|---|
| tgval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 12933 |
. 2
| |
| 2 | inss1 3383 |
. . . . . . . . 9
| |
| 3 | 2 | unissi 3862 |
. . . . . . . 8
|
| 4 | 3 | sseli 3179 |
. . . . . . 7
|
| 5 | 4 | pm4.71ri 392 |
. . . . . 6
|
| 6 | 5 | ralbii 2503 |
. . . . 5
|
| 7 | r19.26 2623 |
. . . . 5
| |
| 8 | 6, 7 | bitri 184 |
. . . 4
|
| 9 | dfss3 3173 |
. . . 4
| |
| 10 | dfss3 3173 |
. . . . 5
| |
| 11 | elin 3346 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi2i 457 |
. . . . . . . . . 10
|
| 13 | an12 561 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 184 |
. . . . . . . . 9
|
| 15 | 14 | exbii 1619 |
. . . . . . . 8
|
| 16 | eluni 3842 |
. . . . . . . 8
| |
| 17 | df-rex 2481 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
. . . . . . 7
|
| 19 | velpw 3612 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2i 457 |
. . . . . . . 8
|
| 21 | 20 | rexbii 2504 |
. . . . . . 7
|
| 22 | 18, 21 | bitr2i 185 |
. . . . . 6
|
| 23 | 22 | ralbii 2503 |
. . . . 5
|
| 24 | 10, 23 | anbi12i 460 |
. . . 4
|
| 25 | 8, 9, 24 | 3bitr4i 212 |
. . 3
|
| 26 | 25 | abbii 2312 |
. 2
|
| 27 | 1, 26 | eqtrdi 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 |
| This theorem is referenced by: eltg2 14289 |
| Copyright terms: Public domain | W3C validator |