| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgval2 | Unicode version | ||
| Description: Definition of a topology
generated by a basis in [Munkres] p. 78. Later
we show (in tgcl 14738) that |
| Ref | Expression |
|---|---|
| tgval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 13295 |
. 2
| |
| 2 | inss1 3424 |
. . . . . . . . 9
| |
| 3 | 2 | unissi 3911 |
. . . . . . . 8
|
| 4 | 3 | sseli 3220 |
. . . . . . 7
|
| 5 | 4 | pm4.71ri 392 |
. . . . . 6
|
| 6 | 5 | ralbii 2536 |
. . . . 5
|
| 7 | r19.26 2657 |
. . . . 5
| |
| 8 | 6, 7 | bitri 184 |
. . . 4
|
| 9 | dfss3 3213 |
. . . 4
| |
| 10 | dfss3 3213 |
. . . . 5
| |
| 11 | elin 3387 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi2i 457 |
. . . . . . . . . 10
|
| 13 | an12 561 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 184 |
. . . . . . . . 9
|
| 15 | 14 | exbii 1651 |
. . . . . . . 8
|
| 16 | eluni 3891 |
. . . . . . . 8
| |
| 17 | df-rex 2514 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
. . . . . . 7
|
| 19 | velpw 3656 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2i 457 |
. . . . . . . 8
|
| 21 | 20 | rexbii 2537 |
. . . . . . 7
|
| 22 | 18, 21 | bitr2i 185 |
. . . . . 6
|
| 23 | 22 | ralbii 2536 |
. . . . 5
|
| 24 | 10, 23 | anbi12i 460 |
. . . 4
|
| 25 | 8, 9, 24 | 3bitr4i 212 |
. . 3
|
| 26 | 25 | abbii 2345 |
. 2
|
| 27 | 1, 26 | eqtrdi 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topgen 13293 |
| This theorem is referenced by: eltg2 14727 |
| Copyright terms: Public domain | W3C validator |