Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssdif | Unicode version |
Description: Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.) |
Ref | Expression |
---|---|
unssdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . . . 8 | |
2 | eldif 3136 | . . . . . . . 8 | |
3 | 1, 2 | mpbiran 940 | . . . . . . 7 |
4 | 3 | anbi1i 458 | . . . . . 6 |
5 | eldif 3136 | . . . . . 6 | |
6 | ioran 752 | . . . . . 6 | |
7 | 4, 5, 6 | 3bitr4i 212 | . . . . 5 |
8 | 7 | biimpi 120 | . . . 4 |
9 | 8 | con2i 627 | . . 3 |
10 | elun 3274 | . . 3 | |
11 | eldif 3136 | . . . 4 | |
12 | 1, 11 | mpbiran 940 | . . 3 |
13 | 9, 10, 12 | 3imtr4i 201 | . 2 |
14 | 13 | ssriv 3157 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 104 wo 708 wcel 2146 cvv 2735 cdif 3124 cun 3125 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |