![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unssdif | GIF version |
Description: Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.) |
Ref | Expression |
---|---|
unssdif | ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | eldif 3162 | . . . . . . . 8 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 942 | . . . . . . 7 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | eldif 3162 | . . . . . 6 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵)) | |
6 | ioran 753 | . . . . . 6 ⊢ (¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 212 | . . . . 5 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
8 | 7 | biimpi 120 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) → ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
9 | 8 | con2i 628 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
10 | elun 3300 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
11 | eldif 3162 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))) | |
12 | 1, 11 | mpbiran 942 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
13 | 9, 10, 12 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))) |
14 | 13 | ssriv 3183 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∪ cun 3151 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |