ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssdif GIF version

Theorem unssdif 3398
Description: Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
unssdif (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))

Proof of Theorem unssdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . . . 8 𝑥 ∈ V
2 eldif 3166 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 942 . . . . . . 7 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43anbi1i 458 . . . . . 6 ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3166 . . . . . 6 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵))
6 ioran 753 . . . . . 6 (¬ (𝑥𝐴𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 212 . . . . 5 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
87biimpi 120 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) → ¬ (𝑥𝐴𝑥𝐵))
98con2i 628 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
10 elun 3304 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
11 eldif 3166 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)))
121, 11mpbiran 942 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
139, 10, 123imtr4i 201 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)))
1413ssriv 3187 1 (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator