Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssdif | GIF version |
Description: Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.) |
Ref | Expression |
---|---|
unssdif | ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | eldif 3130 | . . . . . . . 8 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 935 | . . . . . . 7 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | anbi1i 455 | . . . . . 6 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | eldif 3130 | . . . . . 6 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵)) | |
6 | ioran 747 | . . . . . 6 ⊢ (¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 211 | . . . . 5 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
8 | 7 | biimpi 119 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) → ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
9 | 8 | con2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
10 | elun 3268 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
11 | eldif 3130 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))) | |
12 | 1, 11 | mpbiran 935 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
13 | 9, 10, 12 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))) |
14 | 13 | ssriv 3151 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 703 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |