Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ov2gf | Unicode version |
Description: The value of an operation class abstraction. A version of ovmpog 5945 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ov2gf.a | |
ov2gf.c | |
ov2gf.d | |
ov2gf.1 | |
ov2gf.2 | |
ov2gf.3 | |
ov2gf.4 | |
ov2gf.5 |
Ref | Expression |
---|---|
ov2gf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . . 3 | |
2 | ov2gf.a | . . . 4 | |
3 | ov2gf.c | . . . 4 | |
4 | ov2gf.d | . . . 4 | |
5 | ov2gf.1 | . . . . . 6 | |
6 | 5 | nfel1 2307 | . . . . 5 |
7 | ov2gf.5 | . . . . . . . 8 | |
8 | nfmpo1 5878 | . . . . . . . 8 | |
9 | 7, 8 | nfcxfr 2293 | . . . . . . 7 |
10 | nfcv 2296 | . . . . . . 7 | |
11 | 2, 9, 10 | nfov 5841 | . . . . . 6 |
12 | 11, 5 | nfeq 2304 | . . . . 5 |
13 | 6, 12 | nfim 1549 | . . . 4 |
14 | ov2gf.2 | . . . . . 6 | |
15 | 14 | nfel1 2307 | . . . . 5 |
16 | nfmpo2 5879 | . . . . . . . 8 | |
17 | 7, 16 | nfcxfr 2293 | . . . . . . 7 |
18 | 3, 17, 4 | nfov 5841 | . . . . . 6 |
19 | 18, 14 | nfeq 2304 | . . . . 5 |
20 | 15, 19 | nfim 1549 | . . . 4 |
21 | ov2gf.3 | . . . . . 6 | |
22 | 21 | eleq1d 2223 | . . . . 5 |
23 | oveq1 5821 | . . . . . 6 | |
24 | 23, 21 | eqeq12d 2169 | . . . . 5 |
25 | 22, 24 | imbi12d 233 | . . . 4 |
26 | ov2gf.4 | . . . . . 6 | |
27 | 26 | eleq1d 2223 | . . . . 5 |
28 | oveq2 5822 | . . . . . 6 | |
29 | 28, 26 | eqeq12d 2169 | . . . . 5 |
30 | 27, 29 | imbi12d 233 | . . . 4 |
31 | 7 | ovmpt4g 5933 | . . . . 5 |
32 | 31 | 3expia 1184 | . . . 4 |
33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2776 | . . 3 |
34 | 1, 33 | syl5 32 | . 2 |
35 | 34 | 3impia 1179 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1332 wcel 2125 wnfc 2283 cvv 2709 (class class class)co 5814 cmpo 5816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |