| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov2gf | Unicode version | ||
| Description: The value of an operation class abstraction. A version of ovmpog 6061 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ov2gf.a |
|
| ov2gf.c |
|
| ov2gf.d |
|
| ov2gf.1 |
|
| ov2gf.2 |
|
| ov2gf.3 |
|
| ov2gf.4 |
|
| ov2gf.5 |
|
| Ref | Expression |
|---|---|
| ov2gf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. . 3
| |
| 2 | ov2gf.a |
. . . 4
| |
| 3 | ov2gf.c |
. . . 4
| |
| 4 | ov2gf.d |
. . . 4
| |
| 5 | ov2gf.1 |
. . . . . 6
| |
| 6 | 5 | nfel1 2350 |
. . . . 5
|
| 7 | ov2gf.5 |
. . . . . . . 8
| |
| 8 | nfmpo1 5993 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfcxfr 2336 |
. . . . . . 7
|
| 10 | nfcv 2339 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | nfov 5955 |
. . . . . 6
|
| 12 | 11, 5 | nfeq 2347 |
. . . . 5
|
| 13 | 6, 12 | nfim 1586 |
. . . 4
|
| 14 | ov2gf.2 |
. . . . . 6
| |
| 15 | 14 | nfel1 2350 |
. . . . 5
|
| 16 | nfmpo2 5994 |
. . . . . . . 8
| |
| 17 | 7, 16 | nfcxfr 2336 |
. . . . . . 7
|
| 18 | 3, 17, 4 | nfov 5955 |
. . . . . 6
|
| 19 | 18, 14 | nfeq 2347 |
. . . . 5
|
| 20 | 15, 19 | nfim 1586 |
. . . 4
|
| 21 | ov2gf.3 |
. . . . . 6
| |
| 22 | 21 | eleq1d 2265 |
. . . . 5
|
| 23 | oveq1 5932 |
. . . . . 6
| |
| 24 | 23, 21 | eqeq12d 2211 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 234 |
. . . 4
|
| 26 | ov2gf.4 |
. . . . . 6
| |
| 27 | 26 | eleq1d 2265 |
. . . . 5
|
| 28 | oveq2 5933 |
. . . . . 6
| |
| 29 | 28, 26 | eqeq12d 2211 |
. . . . 5
|
| 30 | 27, 29 | imbi12d 234 |
. . . 4
|
| 31 | 7 | ovmpt4g 6049 |
. . . . 5
|
| 32 | 31 | 3expia 1207 |
. . . 4
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2831 |
. . 3
|
| 34 | 1, 33 | syl5 32 |
. 2
|
| 35 | 34 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |