ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov2gf Unicode version

Theorem ov2gf 5719
Description: The value of an operation class abstraction. A version of ovmpt2g 5729 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a  |-  F/_ x A
ov2gf.c  |-  F/_ y A
ov2gf.d  |-  F/_ y B
ov2gf.1  |-  F/_ x G
ov2gf.2  |-  F/_ y S
ov2gf.3  |-  ( x  =  A  ->  R  =  G )
ov2gf.4  |-  ( y  =  B  ->  G  =  S )
ov2gf.5  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ov2gf  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, C   
x, D, y
Allowed substitution hints:    A( x, y)    B( x, y)    R( x, y)    S( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2624 . . 3  |-  ( S  e.  H  ->  S  e.  _V )
2 ov2gf.a . . . 4  |-  F/_ x A
3 ov2gf.c . . . 4  |-  F/_ y A
4 ov2gf.d . . . 4  |-  F/_ y B
5 ov2gf.1 . . . . . 6  |-  F/_ x G
65nfel1 2235 . . . . 5  |-  F/ x  G  e.  _V
7 ov2gf.5 . . . . . . . 8  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
8 nfmpt21 5665 . . . . . . . 8  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
97, 8nfcxfr 2222 . . . . . . 7  |-  F/_ x F
10 nfcv 2225 . . . . . . 7  |-  F/_ x
y
112, 9, 10nfov 5629 . . . . . 6  |-  F/_ x
( A F y )
1211, 5nfeq 2232 . . . . 5  |-  F/ x
( A F y )  =  G
136, 12nfim 1507 . . . 4  |-  F/ x
( G  e.  _V  ->  ( A F y )  =  G )
14 ov2gf.2 . . . . . 6  |-  F/_ y S
1514nfel1 2235 . . . . 5  |-  F/ y  S  e.  _V
16 nfmpt22 5666 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
177, 16nfcxfr 2222 . . . . . . 7  |-  F/_ y F
183, 17, 4nfov 5629 . . . . . 6  |-  F/_ y
( A F B )
1918, 14nfeq 2232 . . . . 5  |-  F/ y ( A F B )  =  S
2015, 19nfim 1507 . . . 4  |-  F/ y ( S  e.  _V  ->  ( A F B )  =  S )
21 ov2gf.3 . . . . . 6  |-  ( x  =  A  ->  R  =  G )
2221eleq1d 2153 . . . . 5  |-  ( x  =  A  ->  ( R  e.  _V  <->  G  e.  _V ) )
23 oveq1 5613 . . . . . 6  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
2423, 21eqeq12d 2099 . . . . 5  |-  ( x  =  A  ->  (
( x F y )  =  R  <->  ( A F y )  =  G ) )
2522, 24imbi12d 232 . . . 4  |-  ( x  =  A  ->  (
( R  e.  _V  ->  ( x F y )  =  R )  <-> 
( G  e.  _V  ->  ( A F y )  =  G ) ) )
26 ov2gf.4 . . . . . 6  |-  ( y  =  B  ->  G  =  S )
2726eleq1d 2153 . . . . 5  |-  ( y  =  B  ->  ( G  e.  _V  <->  S  e.  _V ) )
28 oveq2 5614 . . . . . 6  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
2928, 26eqeq12d 2099 . . . . 5  |-  ( y  =  B  ->  (
( A F y )  =  G  <->  ( A F B )  =  S ) )
3027, 29imbi12d 232 . . . 4  |-  ( y  =  B  ->  (
( G  e.  _V  ->  ( A F y )  =  G )  <-> 
( S  e.  _V  ->  ( A F B )  =  S ) ) )
317ovmpt4g 5717 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x F y )  =  R )
32313expia 1143 . . . 4  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( R  e.  _V  ->  ( x F y )  =  R ) )
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2679 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  _V  ->  ( A F B )  =  S ) )
341, 33syl5 32 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  H  ->  ( A F B )  =  S ) )
35343impia 1138 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 922    = wceq 1287    e. wcel 1436   F/_wnfc 2212   _Vcvv 2615  (class class class)co 5606    |-> cmpt2 5608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3930  ax-pow 3982  ax-pr 4008  ax-setind 4324
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-br 3820  df-opab 3874  df-id 4092  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-iota 4942  df-fun 4979  df-fv 4985  df-ov 5609  df-oprab 5610  df-mpt2 5611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator