ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov2gf Unicode version

Theorem ov2gf 5783
Description: The value of an operation class abstraction. A version of ovmpt2g 5793 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a  |-  F/_ x A
ov2gf.c  |-  F/_ y A
ov2gf.d  |-  F/_ y B
ov2gf.1  |-  F/_ x G
ov2gf.2  |-  F/_ y S
ov2gf.3  |-  ( x  =  A  ->  R  =  G )
ov2gf.4  |-  ( y  =  B  ->  G  =  S )
ov2gf.5  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ov2gf  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, C   
x, D, y
Allowed substitution hints:    A( x, y)    B( x, y)    R( x, y)    S( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2631 . . 3  |-  ( S  e.  H  ->  S  e.  _V )
2 ov2gf.a . . . 4  |-  F/_ x A
3 ov2gf.c . . . 4  |-  F/_ y A
4 ov2gf.d . . . 4  |-  F/_ y B
5 ov2gf.1 . . . . . 6  |-  F/_ x G
65nfel1 2240 . . . . 5  |-  F/ x  G  e.  _V
7 ov2gf.5 . . . . . . . 8  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
8 nfmpt21 5729 . . . . . . . 8  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
97, 8nfcxfr 2226 . . . . . . 7  |-  F/_ x F
10 nfcv 2229 . . . . . . 7  |-  F/_ x
y
112, 9, 10nfov 5693 . . . . . 6  |-  F/_ x
( A F y )
1211, 5nfeq 2237 . . . . 5  |-  F/ x
( A F y )  =  G
136, 12nfim 1510 . . . 4  |-  F/ x
( G  e.  _V  ->  ( A F y )  =  G )
14 ov2gf.2 . . . . . 6  |-  F/_ y S
1514nfel1 2240 . . . . 5  |-  F/ y  S  e.  _V
16 nfmpt22 5730 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
177, 16nfcxfr 2226 . . . . . . 7  |-  F/_ y F
183, 17, 4nfov 5693 . . . . . 6  |-  F/_ y
( A F B )
1918, 14nfeq 2237 . . . . 5  |-  F/ y ( A F B )  =  S
2015, 19nfim 1510 . . . 4  |-  F/ y ( S  e.  _V  ->  ( A F B )  =  S )
21 ov2gf.3 . . . . . 6  |-  ( x  =  A  ->  R  =  G )
2221eleq1d 2157 . . . . 5  |-  ( x  =  A  ->  ( R  e.  _V  <->  G  e.  _V ) )
23 oveq1 5673 . . . . . 6  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
2423, 21eqeq12d 2103 . . . . 5  |-  ( x  =  A  ->  (
( x F y )  =  R  <->  ( A F y )  =  G ) )
2522, 24imbi12d 233 . . . 4  |-  ( x  =  A  ->  (
( R  e.  _V  ->  ( x F y )  =  R )  <-> 
( G  e.  _V  ->  ( A F y )  =  G ) ) )
26 ov2gf.4 . . . . . 6  |-  ( y  =  B  ->  G  =  S )
2726eleq1d 2157 . . . . 5  |-  ( y  =  B  ->  ( G  e.  _V  <->  S  e.  _V ) )
28 oveq2 5674 . . . . . 6  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
2928, 26eqeq12d 2103 . . . . 5  |-  ( y  =  B  ->  (
( A F y )  =  G  <->  ( A F B )  =  S ) )
3027, 29imbi12d 233 . . . 4  |-  ( y  =  B  ->  (
( G  e.  _V  ->  ( A F y )  =  G )  <-> 
( S  e.  _V  ->  ( A F B )  =  S ) ) )
317ovmpt4g 5781 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x F y )  =  R )
32313expia 1146 . . . 4  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( R  e.  _V  ->  ( x F y )  =  R ) )
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2687 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  _V  ->  ( A F B )  =  S ) )
341, 33syl5 32 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  H  ->  ( A F B )  =  S ) )
35343impia 1141 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290    e. wcel 1439   F/_wnfc 2216   _Vcvv 2620  (class class class)co 5666    |-> cmpt2 5668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator