| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ov2gf | Unicode version | ||
| Description: The value of an operation class abstraction. A version of ovmpog 6080 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ov2gf.a |
|
| ov2gf.c |
|
| ov2gf.d |
|
| ov2gf.1 |
|
| ov2gf.2 |
|
| ov2gf.3 |
|
| ov2gf.4 |
|
| ov2gf.5 |
|
| Ref | Expression |
|---|---|
| ov2gf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. . 3
| |
| 2 | ov2gf.a |
. . . 4
| |
| 3 | ov2gf.c |
. . . 4
| |
| 4 | ov2gf.d |
. . . 4
| |
| 5 | ov2gf.1 |
. . . . . 6
| |
| 6 | 5 | nfel1 2359 |
. . . . 5
|
| 7 | ov2gf.5 |
. . . . . . . 8
| |
| 8 | nfmpo1 6012 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfcxfr 2345 |
. . . . . . 7
|
| 10 | nfcv 2348 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | nfov 5974 |
. . . . . 6
|
| 12 | 11, 5 | nfeq 2356 |
. . . . 5
|
| 13 | 6, 12 | nfim 1595 |
. . . 4
|
| 14 | ov2gf.2 |
. . . . . 6
| |
| 15 | 14 | nfel1 2359 |
. . . . 5
|
| 16 | nfmpo2 6013 |
. . . . . . . 8
| |
| 17 | 7, 16 | nfcxfr 2345 |
. . . . . . 7
|
| 18 | 3, 17, 4 | nfov 5974 |
. . . . . 6
|
| 19 | 18, 14 | nfeq 2356 |
. . . . 5
|
| 20 | 15, 19 | nfim 1595 |
. . . 4
|
| 21 | ov2gf.3 |
. . . . . 6
| |
| 22 | 21 | eleq1d 2274 |
. . . . 5
|
| 23 | oveq1 5951 |
. . . . . 6
| |
| 24 | 23, 21 | eqeq12d 2220 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 234 |
. . . 4
|
| 26 | ov2gf.4 |
. . . . . 6
| |
| 27 | 26 | eleq1d 2274 |
. . . . 5
|
| 28 | oveq2 5952 |
. . . . . 6
| |
| 29 | 28, 26 | eqeq12d 2220 |
. . . . 5
|
| 30 | 27, 29 | imbi12d 234 |
. . . 4
|
| 31 | 7 | ovmpt4g 6068 |
. . . . 5
|
| 32 | 31 | 3expia 1208 |
. . . 4
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2840 |
. . 3
|
| 34 | 1, 33 | syl5 32 |
. 2
|
| 35 | 34 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |