ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptf Unicode version

Theorem fvmptf 5726
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5709 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1  |-  F/_ x A
fvmptf.2  |-  F/_ x C
fvmptf.3  |-  ( x  =  A  ->  B  =  C )
fvmptf.4  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmptf  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Distinct variable group:    x, D
Allowed substitution hints:    A( x)    B( x)    C( x)    F( x)    V( x)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2811 . . 3  |-  ( C  e.  V  ->  C  e.  _V )
2 fvmptf.1 . . . 4  |-  F/_ x A
3 fvmptf.2 . . . . . 6  |-  F/_ x C
43nfel1 2383 . . . . 5  |-  F/ x  C  e.  _V
5 fvmptf.4 . . . . . . . 8  |-  F  =  ( x  e.  D  |->  B )
6 nfmpt1 4176 . . . . . . . 8  |-  F/_ x
( x  e.  D  |->  B )
75, 6nfcxfr 2369 . . . . . . 7  |-  F/_ x F
87, 2nffv 5636 . . . . . 6  |-  F/_ x
( F `  A
)
98, 3nfeq 2380 . . . . 5  |-  F/ x
( F `  A
)  =  C
104, 9nfim 1618 . . . 4  |-  F/ x
( C  e.  _V  ->  ( F `  A
)  =  C )
11 fvmptf.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
1211eleq1d 2298 . . . . 5  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
13 fveq2 5626 . . . . . 6  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
1413, 11eqeq12d 2244 . . . . 5  |-  ( x  =  A  ->  (
( F `  x
)  =  B  <->  ( F `  A )  =  C ) )
1512, 14imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( B  e.  _V  ->  ( F `  x
)  =  B )  <-> 
( C  e.  _V  ->  ( F `  A
)  =  C ) ) )
165fvmpt2 5717 . . . . 5  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
1716ex 115 . . . 4  |-  ( x  e.  D  ->  ( B  e.  _V  ->  ( F `  x )  =  B ) )
182, 10, 15, 17vtoclgaf 2866 . . 3  |-  ( A  e.  D  ->  ( C  e.  _V  ->  ( F `  A )  =  C ) )
191, 18syl5 32 . 2  |-  ( A  e.  D  ->  ( C  e.  V  ->  ( F `  A )  =  C ) )
2019imp 124 1  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   F/_wnfc 2359   _Vcvv 2799    |-> cmpt 4144   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by:  fvmptd3  5727  elfvmptrab1  5728  sumrbdclem  11883  fsum3  11893  isumss  11897  prodrbdclem  12077  prodmodclem2a  12082  zproddc  12085  fprodntrivap  12090  prodssdc  12095  pcmpt  12861
  Copyright terms: Public domain W3C validator