| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | Unicode version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5678 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 |
|
| fvmptf.2 |
|
| fvmptf.3 |
|
| fvmptf.4 |
|
| Ref | Expression |
|---|---|
| fvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . 3
| |
| 2 | fvmptf.1 |
. . . 4
| |
| 3 | fvmptf.2 |
. . . . . 6
| |
| 4 | 3 | nfel1 2361 |
. . . . 5
|
| 5 | fvmptf.4 |
. . . . . . . 8
| |
| 6 | nfmpt1 4153 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfcxfr 2347 |
. . . . . . 7
|
| 8 | 7, 2 | nffv 5609 |
. . . . . 6
|
| 9 | 8, 3 | nfeq 2358 |
. . . . 5
|
| 10 | 4, 9 | nfim 1596 |
. . . 4
|
| 11 | fvmptf.3 |
. . . . . 6
| |
| 12 | 11 | eleq1d 2276 |
. . . . 5
|
| 13 | fveq2 5599 |
. . . . . 6
| |
| 14 | 13, 11 | eqeq12d 2222 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 5 | fvmpt2 5686 |
. . . . 5
|
| 17 | 16 | ex 115 |
. . . 4
|
| 18 | 2, 10, 15, 17 | vtoclgaf 2843 |
. . 3
|
| 19 | 1, 18 | syl5 32 |
. 2
|
| 20 | 19 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: fvmptd3 5696 elfvmptrab1 5697 sumrbdclem 11803 fsum3 11813 isumss 11817 prodrbdclem 11997 prodmodclem2a 12002 zproddc 12005 fprodntrivap 12010 prodssdc 12015 pcmpt 12781 |
| Copyright terms: Public domain | W3C validator |