| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | Unicode version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5709 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 |
|
| fvmptf.2 |
|
| fvmptf.3 |
|
| fvmptf.4 |
|
| Ref | Expression |
|---|---|
| fvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | fvmptf.1 |
. . . 4
| |
| 3 | fvmptf.2 |
. . . . . 6
| |
| 4 | 3 | nfel1 2383 |
. . . . 5
|
| 5 | fvmptf.4 |
. . . . . . . 8
| |
| 6 | nfmpt1 4176 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfcxfr 2369 |
. . . . . . 7
|
| 8 | 7, 2 | nffv 5636 |
. . . . . 6
|
| 9 | 8, 3 | nfeq 2380 |
. . . . 5
|
| 10 | 4, 9 | nfim 1618 |
. . . 4
|
| 11 | fvmptf.3 |
. . . . . 6
| |
| 12 | 11 | eleq1d 2298 |
. . . . 5
|
| 13 | fveq2 5626 |
. . . . . 6
| |
| 14 | 13, 11 | eqeq12d 2244 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 5 | fvmpt2 5717 |
. . . . 5
|
| 17 | 16 | ex 115 |
. . . 4
|
| 18 | 2, 10, 15, 17 | vtoclgaf 2866 |
. . 3
|
| 19 | 1, 18 | syl5 32 |
. 2
|
| 20 | 19 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 |
| This theorem is referenced by: fvmptd3 5727 elfvmptrab1 5728 sumrbdclem 11883 fsum3 11893 isumss 11897 prodrbdclem 12077 prodmodclem2a 12082 zproddc 12085 fprodntrivap 12090 prodssdc 12095 pcmpt 12861 |
| Copyright terms: Public domain | W3C validator |