| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | Unicode version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5640 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 |
|
| fvmptf.2 |
|
| fvmptf.3 |
|
| fvmptf.4 |
|
| Ref | Expression |
|---|---|
| fvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. . 3
| |
| 2 | fvmptf.1 |
. . . 4
| |
| 3 | fvmptf.2 |
. . . . . 6
| |
| 4 | 3 | nfel1 2350 |
. . . . 5
|
| 5 | fvmptf.4 |
. . . . . . . 8
| |
| 6 | nfmpt1 4127 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfcxfr 2336 |
. . . . . . 7
|
| 8 | 7, 2 | nffv 5571 |
. . . . . 6
|
| 9 | 8, 3 | nfeq 2347 |
. . . . 5
|
| 10 | 4, 9 | nfim 1586 |
. . . 4
|
| 11 | fvmptf.3 |
. . . . . 6
| |
| 12 | 11 | eleq1d 2265 |
. . . . 5
|
| 13 | fveq2 5561 |
. . . . . 6
| |
| 14 | 13, 11 | eqeq12d 2211 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 5 | fvmpt2 5648 |
. . . . 5
|
| 17 | 16 | ex 115 |
. . . 4
|
| 18 | 2, 10, 15, 17 | vtoclgaf 2829 |
. . 3
|
| 19 | 1, 18 | syl5 32 |
. 2
|
| 20 | 19 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmptd3 5658 elfvmptrab1 5659 sumrbdclem 11559 fsum3 11569 isumss 11573 prodrbdclem 11753 prodmodclem2a 11758 zproddc 11761 fprodntrivap 11766 prodssdc 11771 pcmpt 12537 |
| Copyright terms: Public domain | W3C validator |