Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmstopn | Unicode version |
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isms.j | |
isms.x | |
isms.d |
Ref | Expression |
---|---|
xmstopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 | |
2 | isms.x | . . 3 | |
3 | isms.d | . . 3 | |
4 | 1, 2, 3 | isxms 12811 | . 2 |
5 | 4 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 cxp 4581 cres 4585 cfv 5167 cbs 12150 cds 12221 ctopn 12312 cmopn 12345 ctps 12388 cxms 12696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4589 df-res 4595 df-iota 5132 df-fv 5175 df-xms 12699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |