![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmstopn | Unicode version |
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isms.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
isms.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
isms.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
xmstopn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | isms.x |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | isms.d |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | isxms 14348 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simprbi 275 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4647 df-res 4653 df-iota 5193 df-fv 5239 df-xms 14236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |