ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstopn Unicode version

Theorem xmstopn 13249
Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
xmstopn  |-  ( K  e.  *MetSp  ->  J  =  ( MetOpen `  D
) )

Proof of Theorem xmstopn
StepHypRef Expression
1 isms.j . . 3  |-  J  =  ( TopOpen `  K )
2 isms.x . . 3  |-  X  =  ( Base `  K
)
3 isms.d . . 3  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
41, 2, 3isxms 13245 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
54simprbi 273 1  |-  ( K  e.  *MetSp  ->  J  =  ( MetOpen `  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    X. cxp 4609    |` cres 4613   ` cfv 5198   Basecbs 12416   distcds 12489   TopOpenctopn 12580   MetOpencmopn 12779   TopSpctps 12822   *MetSpcxms 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-xms 13133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator