| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmstopn | GIF version | ||
| Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 14998 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 4 | simprbi 275 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 × cxp 4681 ↾ cres 4685 ‘cfv 5280 Basecbs 12907 distcds 12993 TopOpenctopn 13147 MetOpencmopn 14378 TopSpctps 14577 ∞MetSpcxms 14883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-res 4695 df-iota 5241 df-fv 5288 df-xms 14886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |