| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xmstopn | GIF version | ||
| Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) | 
| isms.x | ⊢ 𝑋 = (Base‘𝐾) | 
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | 
| Ref | Expression | 
|---|---|
| xmstopn | ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms 14687 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) | 
| 5 | 4 | simprbi 275 | 1 ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 × cxp 4661 ↾ cres 4665 ‘cfv 5258 Basecbs 12678 distcds 12764 TopOpenctopn 12911 MetOpencmopn 14097 TopSpctps 14266 ∞MetSpcxms 14572 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 df-xms 14575 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |