Theorem List for Intuitionistic Logic Explorer - 14001-14100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ringlz 14001 |
The zero of a unital ring is a left-absorbing element. (Contributed by
FL, 31-Aug-2009.)
|
   
          

 |
| |
| Theorem | ringrz 14002 |
The zero of a unital ring is a right-absorbing element. (Contributed by
FL, 31-Aug-2009.)
|
   
           
 |
| |
| Theorem | ringlzd 14003 |
The zero of a unital ring is a left-absorbing element. (Contributed by
SN, 7-Mar-2025.)
|
   
            
  |
| |
| Theorem | ringrzd 14004 |
The zero of a unital ring is a right-absorbing element. (Contributed by
SN, 7-Mar-2025.)
|
   
             
 |
| |
| Theorem | ringsrg 14005 |
Any ring is also a semiring. (Contributed by Thierry Arnoux,
1-Apr-2018.)
|

SRing |
| |
| Theorem | ring1eq0 14006 |
If one and zero are equal, then any two elements of a ring are equal.
Alternately, every ring has one distinct from zero except the zero ring
containing the single element   . (Contributed by Mario
Carneiro, 10-Sep-2014.)
|
             
    |
| |
| Theorem | ringinvnz1ne0 14007* |
In a unital ring, a left invertible element is different from zero iff
. (Contributed by FL, 18-Apr-2010.)
(Revised by AV,
24-Aug-2021.)
|
   
       
          
     |
| |
| Theorem | ringinvnzdiv 14008* |
In a unital ring, a left invertible element is not a zero divisor.
(Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen,
18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
|
   
       
          
      
  |
| |
| Theorem | ringnegl 14009 |
Negation in a ring is the same as left multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
   
             
              |
| |
| Theorem | ringnegr 14010 |
Negation in a ring is the same as right multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
   
             
              |
| |
| Theorem | ringmneg1 14011 |
Negation of a product in a ring. (mulneg1 8537 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
|
   
                              |
| |
| Theorem | ringmneg2 14012 |
Negation of a product in a ring. (mulneg2 8538 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
|
   
                              |
| |
| Theorem | ringm2neg 14013 |
Double negation of a product in a ring. (mul2neg 8540 analog.)
(Contributed by Mario Carneiro, 4-Dec-2014.)
|
   
                              |
| |
| Theorem | ringsubdi 14014 |
Ring multiplication distributes over subtraction. (subdi 8527 analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
   
        
              
     |
| |
| Theorem | ringsubdir 14015 |
Ring multiplication distributes over subtraction. (subdir 8528 analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
   
        
              
     |
| |
| Theorem | mulgass2 14016 |
An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
   
.g 
     
     
       |
| |
| Theorem | ring1 14017 |
The (smallest) structure representing a zero ring. (Contributed by
AV, 28-Apr-2019.)
|
               
                   
         |
| |
| Theorem | ringn0 14018 |
The class of rings is not empty (it is also inhabited, as shown at
ring1 14017). (Contributed by AV, 29-Apr-2019.)
|
 |
| |
| Theorem | ringlghm 14019* |
Left-multiplication in a ring by a fixed element of the ring is a group
homomorphism. (It is not usually a ring homomorphism.) (Contributed by
Mario Carneiro, 4-May-2015.)
|
   
     

        |
| |
| Theorem | ringrghm 14020* |
Right-multiplication in a ring by a fixed element of the ring is a group
homomorphism. (It is not usually a ring homomorphism.) (Contributed by
Mario Carneiro, 4-May-2015.)
|
   
     

        |
| |
| Theorem | ringressid 14021 |
A ring restricted to its base set is a ring. It will usually be the
original ring exactly, of course, but to show that needs additional
conditions such as those in strressid 13099. (Contributed by Jim Kingdon,
28-Feb-2025.)
|
     
↾s    |
| |
| Theorem | imasring 14022* |
The image structure of a ring is a ring. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
  s
          
                
                 
        
            
                 
        
             
         |
| |
| Theorem | imasringf1 14023 |
The image of a ring under an injection is a ring. (Contributed by AV,
27-Feb-2025.)
|
 s           

  |
| |
| Theorem | qusring2 14024* |
The quotient structure of a ring is a ring. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
  s
 
       
            
  
    
 
 
     
  
       |
| |
| 7.3.6 Opposite ring
|
| |
| Syntax | coppr 14025 |
The opposite ring operation.
|
oppr |
| |
| Definition | df-oppr 14026 |
Define an opposite ring, which is the same as the original ring but with
multiplication written the other way around. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
oppr 

sSet       tpos         |
| |
| Theorem | opprvalg 14027 |
Value of the opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
   
    oppr    sSet      
tpos    |
| |
| Theorem | opprmulfvalg 14028 |
Value of the multiplication operation of an opposite ring. (Contributed
by Mario Carneiro, 1-Dec-2014.)
|
   
    oppr 
     tpos
 |
| |
| Theorem | opprmulg 14029 |
Value of the multiplication operation of an opposite ring. Hypotheses
eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed
by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro,
30-Aug-2015.)
|
   
    oppr 
      
  
   |
| |
| Theorem | crngoppr 14030 |
In a commutative ring, the opposite ring is equivalent to the original
ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
|
   
    oppr 
     
       |
| |
| Theorem | opprex 14031 |
Existence of the opposite ring. If you know that is a ring, see
opprring 14037. (Contributed by Jim Kingdon, 10-Jan-2025.)
|
oppr     |
| |
| Theorem | opprsllem 14032 |
Lemma for opprbasg 14033 and oppraddg 14034. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
|
oppr   Slot             
        
      |
| |
| Theorem | opprbasg 14033 |
Base set of an opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
oppr             |
| |
| Theorem | oppraddg 14034 |
Addition operation of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
oppr           |
| |
| Theorem | opprrng 14035 |
An opposite non-unital ring is a non-unital ring. (Contributed by AV,
15-Feb-2025.)
|
oppr   Rng Rng |
| |
| Theorem | opprrngbg 14036 |
A set is a non-unital ring if and only if its opposite is a non-unital
ring. Bidirectional form of opprrng 14035. (Contributed by AV,
15-Feb-2025.)
|
oppr    Rng
Rng  |
| |
| Theorem | opprring 14037 |
An opposite ring is a ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
|
oppr  
  |
| |
| Theorem | opprringbg 14038 |
Bidirectional form of opprring 14037. (Contributed by Mario Carneiro,
6-Dec-2014.)
|
oppr       |
| |
| Theorem | oppr0g 14039 |
Additive identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
oppr 
           |
| |
| Theorem | oppr1g 14040 |
Multiplicative identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
oppr 
           |
| |
| Theorem | opprnegg 14041 |
The negative function in an opposite ring. (Contributed by Mario
Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
oppr       
       |
| |
| Theorem | opprsubgg 14042 |
Being a subgroup is a symmetric property. (Contributed by Mario
Carneiro, 6-Dec-2014.)
|
oppr   SubGrp  SubGrp    |
| |
| Theorem | mulgass3 14043 |
An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
   
.g 
     
   
         |
| |
| 7.3.7 Divisibility
|
| |
| Syntax | cdsr 14044 |
Ring divisibility relation.
|
r |
| |
| Syntax | cui 14045 |
Units in a ring.
|
Unit |
| |
| Syntax | cir 14046 |
Ring irreducibles.
|
Irred |
| |
| Definition | df-dvdsr 14047* |
Define the (right) divisibility relation in a ring. Access to the left
divisibility relation is available through
 r oppr   . (Contributed by Mario Carneiro,
1-Dec-2014.)
|
r                             |
| |
| Definition | df-unit 14048 |
Define the set of units in a ring, that is, all elements with a left and
right multiplicative inverse. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
Unit      r   r oppr               |
| |
| Definition | df-irred 14049* |
Define the set of irreducible elements in a ring. (Contributed by Mario
Carneiro, 4-Dec-2014.)
|
Irred        Unit  
 ![]_ ]_](_urbrack.gif)   
           |
| |
| Theorem | reldvdsrsrg 14050 |
The divides relation is a relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
|
 SRing  r    |
| |
| Theorem | dvdsrvald 14051* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
        r    SRing 
     
      
     |
| |
| Theorem | dvdsrd 14052* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
        r    SRing 
     
   
     |
| |
| Theorem | dvdsr2d 14053* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
        r    SRing 
     
    
    |
| |
| Theorem | dvdsrmuld 14054 |
A left-multiple of is
divisible by .
(Contributed by
Mario Carneiro, 1-Dec-2014.)
|
        r    SRing 
     
        |
| |
| Theorem | dvdsrcld 14055 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
        r    SRing   
  |
| |
| Theorem | dvdsrex 14056 |
Existence of the divisibility relation. (Contributed by Jim Kingdon,
28-Jan-2025.)
|
 SRing  r    |
| |
| Theorem | dvdsrcl2 14057 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
     r   
   |
| |
| Theorem | dvdsrid 14058 |
An element in a (unital) ring divides itself. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
     r    
  |
| |
| Theorem | dvdsrtr 14059 |
Divisibility is transitive. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
     r   
   |
| |
| Theorem | dvdsrmul1 14060 |
The divisibility relation is preserved under right-multiplication.
(Contributed by Mario Carneiro, 1-Dec-2014.)
|
     r 
       
     |
| |
| Theorem | dvdsrneg 14061 |
An element divides its negative. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
     r         
      |
| |
| Theorem | dvdsr01 14062 |
In a ring, zero is divisible by all elements. ("Zero divisor" as a
term
has a somewhat different meaning.) (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
     r 
      
 |
| |
| Theorem | dvdsr02 14063 |
Only zero is divisible by zero. (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
     r 
      
  |
| |
| Theorem | isunitd 14064 |
Property of being a unit of a ring. A unit is an element that left-
and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.)
(Revised by Mario Carneiro, 8-Dec-2015.)
|
 Unit           r   
oppr     r    SRing    
   |
| |
| Theorem | 1unit 14065 |
The multiplicative identity is a unit. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
Unit      
  |
| |
| Theorem | unitcld 14066 |
A unit is an element of the base set. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
       Unit    SRing      |
| |
| Theorem | unitssd 14067 |
The set of units is contained in the base set. (Contributed by Mario
Carneiro, 5-Oct-2015.)
|
       Unit    SRing    |
| |
| Theorem | opprunitd 14068 |
Being a unit is a symmetric property, so it transfers to the opposite
ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
|
 Unit    oppr     
Unit    |
| |
| Theorem | crngunit 14069 |
Property of being a unit in a commutative ring. (Contributed by Mario
Carneiro, 18-Apr-2016.)
|
Unit       r      |
| |
| Theorem | dvdsunit 14070 |
A divisor of a unit is a unit. (Contributed by Mario Carneiro,
18-Apr-2016.)
|
Unit   r   
   |
| |
| Theorem | unitmulcl 14071 |
The product of units is a unit. (Contributed by Mario Carneiro,
2-Dec-2014.)
|
Unit 
     
     |
| |
| Theorem | unitmulclb 14072 |
Reversal of unitmulcl 14071 in a commutative ring. (Contributed by
Mario
Carneiro, 18-Apr-2016.)
|
Unit 
         
         |
| |
| Theorem | unitgrpbasd 14073 |
The base set of the group of units. (Contributed by Mario Carneiro,
25-Dec-2014.)
|
 Unit     mulGrp  ↾s    SRing        |
| |
| Theorem | unitgrp 14074 |
The group of units is a group under multiplication. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
Unit   mulGrp  ↾s  
  |
| |
| Theorem | unitabl 14075 |
The group of units of a commutative ring is abelian. (Contributed by
Mario Carneiro, 19-Apr-2016.)
|
Unit   mulGrp  ↾s  
  |
| |
| Theorem | unitgrpid 14076 |
The identity of the group of units of a ring is the ring unity.
(Contributed by Mario Carneiro, 2-Dec-2014.)
|
Unit   mulGrp  ↾s 
           |
| |
| Theorem | unitsubm 14077 |
The group of units is a submonoid of the multiplicative monoid of the
ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
|
Unit  mulGrp  
SubMnd    |
| |
| Syntax | cinvr 14078 |
Extend class notation with multiplicative inverse.
|
 |
| |
| Definition | df-invr 14079 |
Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
|
      mulGrp  ↾s Unit      |
| |
| Theorem | invrfvald 14080 |
Multiplicative inverse function for a ring. (Contributed by NM,
21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
|
 Unit     mulGrp  ↾s         
         |
| |
| Theorem | unitinvcl 14081 |
The inverse of a unit exists and is a unit. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
Unit       

      |
| |
| Theorem | unitinvinv 14082 |
The inverse of the inverse of a unit is the same element. (Contributed
by Mario Carneiro, 4-Dec-2014.)
|
Unit       

          |
| |
| Theorem | ringinvcl 14083 |
The inverse of a unit is an element of the ring. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
Unit                
  |
| |
| Theorem | unitlinv 14084 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
Unit                     
  |
| |
| Theorem | unitrinv 14085 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
Unit                        |
| |
| Theorem | 1rinv 14086 |
The inverse of the ring unity is the ring unity. (Contributed by Mario
Carneiro, 18-Jun-2015.)
|
        
   |
| |
| Theorem | 0unit 14087 |
The additive identity is a unit if and only if , i.e. we are
in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
|
Unit             |
| |
| Theorem | unitnegcl 14088 |
The negative of a unit is a unit. (Contributed by Mario Carneiro,
4-Dec-2014.)
|
Unit             
  |
| |
| Syntax | cdvr 14089 |
Extend class notation with ring division.
|
/r |
| |
| Definition | df-dvr 14090* |
Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
|
/r  
     Unit 
                   |
| |
| Theorem | dvrfvald 14091* |
Division operation in a ring. (Contributed by Mario Carneiro,
2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened
by AV, 2-Mar-2024.)
|
             Unit          /r   
SRing 
 
         |
| |
| Theorem | dvrvald 14092 |
Division operation in a ring. (Contributed by Mario Carneiro,
2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
|
             Unit          /r   
      
         |
| |
| Theorem | dvrcl 14093 |
Closure of division operation. (Contributed by Mario Carneiro,
2-Jul-2014.)
|
    Unit 
/r   
  
  |
| |
| Theorem | unitdvcl 14094 |
The units are closed under division. (Contributed by Mario Carneiro,
2-Jul-2014.)
|
Unit 
/r   
  
  |
| |
| Theorem | dvrid 14095 |
A ring element divided by itself is the ring unity. (dividap 8844
analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
|
Unit 
/r          
 |
| |
| Theorem | dvr1 14096 |
A ring element divided by the ring unity is itself. (div1 8846
analog.)
(Contributed by Mario Carneiro, 18-Jun-2015.)
|
   
/r         
  |
| |
| Theorem | dvrass 14097 |
An associative law for division. (divassap 8833 analog.) (Contributed by
Mario Carneiro, 4-Dec-2014.)
|
    Unit 
/r 
     
     
       |
| |
| Theorem | dvrcan1 14098 |
A cancellation law for division. (divcanap1 8824 analog.) (Contributed
by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro,
2-Dec-2014.)
|
    Unit 
/r 
     
       |
| |
| Theorem | dvrcan3 14099 |
A cancellation law for division. (divcanap3 8841 analog.) (Contributed
by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro,
18-Jun-2015.)
|
    Unit 
/r 
     
    
  |
| |
| Theorem | dvreq1 14100 |
Equality in terms of ratio equal to ring unity. (diveqap1 8848 analog.)
(Contributed by Mario Carneiro, 28-Apr-2016.)
|
    Unit 
/r       
   
   |