ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvdiagfn Unicode version

Theorem fvdiagfn 6840
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
fvdiagfn  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Distinct variable groups:    x, B    x, I    x, W    x, X
Allowed substitution hint:    F( x)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  X  e.  B )
2 snexg 4268 . . 3  |-  ( X  e.  B  ->  { X }  e.  _V )
3 xpexg 4833 . . 3  |-  ( ( I  e.  W  /\  { X }  e.  _V )  ->  ( I  X.  { X } )  e. 
_V )
42, 3sylan2 286 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( I  X.  { X } )  e.  _V )
5 sneq 3677 . . . 4  |-  ( x  =  X  ->  { x }  =  { X } )
65xpeq2d 4743 . . 3  |-  ( x  =  X  ->  (
I  X.  { x } )  =  ( I  X.  { X } ) )
7 fdiagfn.f . . 3  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
86, 7fvmptg 5710 . 2  |-  ( ( X  e.  B  /\  ( I  X.  { X } )  e.  _V )  ->  ( F `  X )  =  ( I  X.  { X } ) )
91, 4, 8syl2anc 411 1  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4145    X. cxp 4717   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator