ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvdiagfn Unicode version

Theorem fvdiagfn 6695
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
fvdiagfn  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Distinct variable groups:    x, B    x, I    x, W    x, X
Allowed substitution hint:    F( x)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  X  e.  B )
2 snexg 4186 . . 3  |-  ( X  e.  B  ->  { X }  e.  _V )
3 xpexg 4742 . . 3  |-  ( ( I  e.  W  /\  { X }  e.  _V )  ->  ( I  X.  { X } )  e. 
_V )
42, 3sylan2 286 . 2  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( I  X.  { X } )  e.  _V )
5 sneq 3605 . . . 4  |-  ( x  =  X  ->  { x }  =  { X } )
65xpeq2d 4652 . . 3  |-  ( x  =  X  ->  (
I  X.  { x } )  =  ( I  X.  { X } ) )
7 fdiagfn.f . . 3  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
86, 7fvmptg 5594 . 2  |-  ( ( X  e.  B  /\  ( I  X.  { X } )  e.  _V )  ->  ( F `  X )  =  ( I  X.  { X } ) )
91, 4, 8syl2anc 411 1  |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `  X
)  =  ( I  X.  { X }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594    |-> cmpt 4066    X. cxp 4626   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator