ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstg Unicode version

Theorem fconstg 5472
Description: A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )

Proof of Theorem fconstg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3644 . . . 4  |-  ( x  =  B  ->  { x }  =  { B } )
21xpeq2d 4699 . . 3  |-  ( x  =  B  ->  ( A  X.  { x }
)  =  ( A  X.  { B }
) )
3 feq1 5408 . . . 4  |-  ( ( A  X.  { x } )  =  ( A  X.  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { x } ) )
4 feq3 5410 . . . 4  |-  ( { x }  =  { B }  ->  ( ( A  X.  { B } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
53, 4sylan9bb 462 . . 3  |-  ( ( ( A  X.  {
x } )  =  ( A  X.  { B } )  /\  {
x }  =  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
62, 1, 5syl2anc 411 . 2  |-  ( x  =  B  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
7 vex 2775 . . 3  |-  x  e. 
_V
87fconst 5471 . 2  |-  ( A  X.  { x }
) : A --> { x }
96, 8vtoclg 2833 1  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   {csn 3633    X. cxp 4673   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  fnconstg  5473  fconst6g  5474  xpsng  5755  fvconst2g  5798  fconst2g  5799  dvef  15199
  Copyright terms: Public domain W3C validator