ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstg Unicode version

Theorem fconstg 5450
Description: A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )

Proof of Theorem fconstg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3629 . . . 4  |-  ( x  =  B  ->  { x }  =  { B } )
21xpeq2d 4683 . . 3  |-  ( x  =  B  ->  ( A  X.  { x }
)  =  ( A  X.  { B }
) )
3 feq1 5386 . . . 4  |-  ( ( A  X.  { x } )  =  ( A  X.  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { x } ) )
4 feq3 5388 . . . 4  |-  ( { x }  =  { B }  ->  ( ( A  X.  { B } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
53, 4sylan9bb 462 . . 3  |-  ( ( ( A  X.  {
x } )  =  ( A  X.  { B } )  /\  {
x }  =  { B } )  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
62, 1, 5syl2anc 411 . 2  |-  ( x  =  B  ->  (
( A  X.  {
x } ) : A --> { x }  <->  ( A  X.  { B } ) : A --> { B } ) )
7 vex 2763 . . 3  |-  x  e. 
_V
87fconst 5449 . 2  |-  ( A  X.  { x }
) : A --> { x }
96, 8vtoclg 2820 1  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {csn 3618    X. cxp 4657   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  fnconstg  5451  fconst6g  5452  xpsng  5733  fvconst2g  5772  fconst2g  5773  dvef  14873
  Copyright terms: Public domain W3C validator