| Step | Hyp | Ref
| Expression |
| 1 | | prop 7559 |
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
| 2 | | prnminu 7573 |
. . . . . 6
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) |
| 3 | 1, 2 | sylan 283 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) |
| 4 | 3 | 3ad2antl2 1162 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → ∃𝑠 ∈ (2nd
‘𝐵)𝑠 <Q 𝑥) |
| 5 | | simprr 531 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥) |
| 6 | | ltexnqi 7493 |
. . . . . 6
⊢ (𝑠 <Q
𝑥 → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) |
| 7 | 5, 6 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) |
| 8 | | simpl1 1002 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐴 ∈ P) |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝐴 ∈ P) |
| 10 | | simprl 529 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑡 ∈ Q) |
| 11 | | prop 7559 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 12 | | prarloc2 7588 |
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑡 ∈ Q) →
∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
| 13 | 11, 12 | sylan 283 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑡 ∈ Q)
→ ∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
| 14 | 9, 10, 13 | syl2anc 411 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
| 15 | | simpl2 1003 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐵 ∈ P) |
| 16 | 15 | ad3antrrr 492 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐵 ∈
P) |
| 17 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐵)) |
| 18 | 17 | ad3antrrr 492 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐵)) |
| 19 | | elprnqu 7566 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) |
| 20 | 1, 19 | sylan 283 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) |
| 21 | 16, 18, 20 | syl2anc 411 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈
Q) |
| 22 | 8 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐴 ∈
P) |
| 23 | | simprl 529 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈ (1st
‘𝐴)) |
| 24 | | elprnql 7565 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
| 25 | 11, 24 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
| 26 | 22, 23, 25 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈
Q) |
| 27 | 10 | adantr 276 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 ∈
Q) |
| 28 | | addclnq 7459 |
. . . . . . . . 9
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑢
+Q 𝑡) ∈ Q) |
| 29 | 26, 27, 28 | syl2anc 411 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈
Q) |
| 30 | | nqtri3or 7480 |
. . . . . . . 8
⊢ ((𝑥 ∈ Q ∧
(𝑢
+Q 𝑡) ∈ Q) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) |
| 31 | 21, 29, 30 | syl2anc 411 |
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) |
| 32 | 15 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵 ∈ P) |
| 33 | | simprl 529 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd ‘𝐵)) |
| 34 | | elprnqu 7566 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) |
| 35 | 1, 34 | sylan 283 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) |
| 36 | 32, 33, 35 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ Q) |
| 37 | 36 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ Q) |
| 38 | 33 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (2nd ‘𝐵)) |
| 39 | | simplrr 536 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑠 +Q
𝑡) = 𝑥) |
| 40 | | breq1 4037 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 +Q
𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q
𝑡))) |
| 41 | 40 | biimprd 158 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 +Q
𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q
𝑡) → (𝑠 +Q
𝑡)
<Q (𝑢 +Q 𝑡))) |
| 42 | 39, 41 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) |
| 43 | 42 | imp 124 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡)) |
| 44 | | ltanqg 7484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 45 | 44 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 46 | 26 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ Q) |
| 47 | 27 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑡 ∈ Q) |
| 48 | | addcomnqg 7465 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 49 | 48 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 50 | 45, 37, 46, 47, 49 | caovord2d 6097 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) |
| 51 | 43, 50 | mpbird 167 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 <Q 𝑢) |
| 52 | 22 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐴 ∈ P) |
| 53 | 23 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ (1st ‘𝐴)) |
| 54 | | prcdnql 7568 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
| 55 | 11, 54 | sylan 283 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
| 56 | 52, 53, 55 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
| 57 | 51, 56 | mpd 13 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (1st ‘𝐴)) |
| 58 | | rspe 2546 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝐵)
∧ 𝑠 ∈
(1st ‘𝐴))) |
| 59 | 37, 38, 57, 58 | syl12anc 1247 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 ∈ (1st ‘𝐴))) |
| 60 | 16 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵 ∈ P) |
| 61 | | ltdfpr 7590 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) |
| 62 | 60, 52, 61 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) |
| 63 | 59, 62 | mpbird 167 |
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵<P 𝐴) |
| 64 | | simpll3 1040 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P
𝐴) |
| 65 | 64 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ¬ 𝐵<P 𝐴) |
| 66 | 63, 65 | pm2.21dd 621 |
. . . . . . . . 9
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑥 ∈ (2nd ‘𝐴)) |
| 67 | 66 | ex 115 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) |
| 68 | | simprr 531 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) |
| 69 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd ‘𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) |
| 70 | 68, 69 | syl5ibrcom 157 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) |
| 71 | | prcunqu 7569 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
| 72 | 11, 71 | sylan 283 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
(𝑢
+Q 𝑡) ∈ (2nd ‘𝐴)) → ((𝑢 +Q 𝑡) <Q
𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
| 73 | 22, 68, 72 | syl2anc 411 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
| 74 | 67, 70, 73 | 3jaod 1315 |
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥) → 𝑥 ∈ (2nd
‘𝐴))) |
| 75 | 31, 74 | mpd 13 |
. . . . . 6
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐴)) |
| 76 | 14, 75 | rexlimddv 2619 |
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) |
| 77 | 7, 76 | rexlimddv 2619 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) |
| 78 | 4, 77 | rexlimddv 2619 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐴)) |
| 79 | 78 | ex 115 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd ‘𝐵) → 𝑥 ∈ (2nd ‘𝐴))) |
| 80 | 79 | ssrdv 3190 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (2nd
‘𝐵) ⊆
(2nd ‘𝐴)) |