| Step | Hyp | Ref
 | Expression | 
| 1 |   | prop 7542 | 
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 2 |   | prnminu 7556 | 
. . . . . 6
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) | 
| 3 | 1, 2 | sylan 283 | 
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) | 
| 4 | 3 | 3ad2antl2 1162 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → ∃𝑠 ∈ (2nd
‘𝐵)𝑠 <Q 𝑥) | 
| 5 |   | simprr 531 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥) | 
| 6 |   | ltexnqi 7476 | 
. . . . . 6
⊢ (𝑠 <Q
𝑥 → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) | 
| 8 |   | simpl1 1002 | 
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐴 ∈ P) | 
| 9 | 8 | ad2antrr 488 | 
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝐴 ∈ P) | 
| 10 |   | simprl 529 | 
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑡 ∈ Q) | 
| 11 |   | prop 7542 | 
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 12 |   | prarloc2 7571 | 
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑡 ∈ Q) →
∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 13 | 11, 12 | sylan 283 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑡 ∈ Q)
→ ∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 14 | 9, 10, 13 | syl2anc 411 | 
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 15 |   | simpl2 1003 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐵 ∈ P) | 
| 16 | 15 | ad3antrrr 492 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐵 ∈
P) | 
| 17 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐵)) | 
| 18 | 17 | ad3antrrr 492 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐵)) | 
| 19 |   | elprnqu 7549 | 
. . . . . . . . . 10
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) | 
| 20 | 1, 19 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) | 
| 21 | 16, 18, 20 | syl2anc 411 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈
Q) | 
| 22 | 8 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐴 ∈
P) | 
| 23 |   | simprl 529 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈ (1st
‘𝐴)) | 
| 24 |   | elprnql 7548 | 
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) | 
| 25 | 11, 24 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) | 
| 26 | 22, 23, 25 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈
Q) | 
| 27 | 10 | adantr 276 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 ∈
Q) | 
| 28 |   | addclnq 7442 | 
. . . . . . . . 9
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑢
+Q 𝑡) ∈ Q) | 
| 29 | 26, 27, 28 | syl2anc 411 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈
Q) | 
| 30 |   | nqtri3or 7463 | 
. . . . . . . 8
⊢ ((𝑥 ∈ Q ∧
(𝑢
+Q 𝑡) ∈ Q) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) | 
| 31 | 21, 29, 30 | syl2anc 411 | 
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) | 
| 32 | 15 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵 ∈ P) | 
| 33 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd ‘𝐵)) | 
| 34 |   | elprnqu 7549 | 
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) | 
| 35 | 1, 34 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) | 
| 36 | 32, 33, 35 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ Q) | 
| 37 | 36 | ad3antrrr 492 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ Q) | 
| 38 | 33 | ad3antrrr 492 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (2nd ‘𝐵)) | 
| 39 |   | simplrr 536 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑠 +Q
𝑡) = 𝑥) | 
| 40 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 +Q
𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q
𝑡))) | 
| 41 | 40 | biimprd 158 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 +Q
𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q
𝑡) → (𝑠 +Q
𝑡)
<Q (𝑢 +Q 𝑡))) | 
| 42 | 39, 41 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) | 
| 43 | 42 | imp 124 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡)) | 
| 44 |   | ltanqg 7467 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 45 | 44 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 46 | 26 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ Q) | 
| 47 | 27 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑡 ∈ Q) | 
| 48 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 49 | 48 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 50 | 45, 37, 46, 47, 49 | caovord2d 6093 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) | 
| 51 | 43, 50 | mpbird 167 | 
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 <Q 𝑢) | 
| 52 | 22 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐴 ∈ P) | 
| 53 | 23 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ (1st ‘𝐴)) | 
| 54 |   | prcdnql 7551 | 
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) | 
| 55 | 11, 54 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) | 
| 56 | 52, 53, 55 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 → 𝑠 ∈ (1st ‘𝐴))) | 
| 57 | 51, 56 | mpd 13 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (1st ‘𝐴)) | 
| 58 |   | rspe 2546 | 
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝐵)
∧ 𝑠 ∈
(1st ‘𝐴))) | 
| 59 | 37, 38, 57, 58 | syl12anc 1247 | 
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 ∈ (1st ‘𝐴))) | 
| 60 | 16 | adantr 276 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵 ∈ P) | 
| 61 |   | ltdfpr 7573 | 
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) | 
| 62 | 60, 52, 61 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) | 
| 63 | 59, 62 | mpbird 167 | 
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵<P 𝐴) | 
| 64 |   | simpll3 1040 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P
𝐴) | 
| 65 | 64 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ¬ 𝐵<P 𝐴) | 
| 66 | 63, 65 | pm2.21dd 621 | 
. . . . . . . . 9
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑥 ∈ (2nd ‘𝐴)) | 
| 67 | 66 | ex 115 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) | 
| 68 |   | simprr 531 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) | 
| 69 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd ‘𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) | 
| 70 | 68, 69 | syl5ibrcom 157 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) | 
| 71 |   | prcunqu 7552 | 
. . . . . . . . . 10
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) | 
| 72 | 11, 71 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
(𝑢
+Q 𝑡) ∈ (2nd ‘𝐴)) → ((𝑢 +Q 𝑡) <Q
𝑥 → 𝑥 ∈ (2nd ‘𝐴))) | 
| 73 | 22, 68, 72 | syl2anc 411 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) | 
| 74 | 67, 70, 73 | 3jaod 1315 | 
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥) → 𝑥 ∈ (2nd
‘𝐴))) | 
| 75 | 31, 74 | mpd 13 | 
. . . . . 6
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐴)) | 
| 76 | 14, 75 | rexlimddv 2619 | 
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) | 
| 77 | 7, 76 | rexlimddv 2619 | 
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) | 
| 78 | 4, 77 | rexlimddv 2619 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐴)) | 
| 79 | 78 | ex 115 | 
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd ‘𝐵) → 𝑥 ∈ (2nd ‘𝐴))) | 
| 80 | 79 | ssrdv 3189 | 
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (2nd
‘𝐵) ⊆
(2nd ‘𝐴)) |