Step | Hyp | Ref
| Expression |
1 | | prop 7416 |
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
2 | | prnminu 7430 |
. . . . . 6
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) |
3 | 1, 2 | sylan 281 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q 𝑥) |
4 | 3 | 3ad2antl2 1150 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → ∃𝑠 ∈ (2nd
‘𝐵)𝑠 <Q 𝑥) |
5 | | simprr 522 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥) |
6 | | ltexnqi 7350 |
. . . . . 6
⊢ (𝑠 <Q
𝑥 → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) |
7 | 5, 6 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡 ∈ Q (𝑠 +Q
𝑡) = 𝑥) |
8 | | simpl1 990 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐴 ∈ P) |
9 | 8 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝐴 ∈ P) |
10 | | simprl 521 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑡 ∈ Q) |
11 | | prop 7416 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
12 | | prarloc2 7445 |
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑡 ∈ Q) →
∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
13 | 11, 12 | sylan 281 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑡 ∈ Q)
→ ∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
14 | 9, 10, 13 | syl2anc 409 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) |
15 | | simpl2 991 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝐵 ∈ P) |
16 | 15 | ad3antrrr 484 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐵 ∈
P) |
17 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐵)) |
18 | 17 | ad3antrrr 484 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐵)) |
19 | | elprnqu 7423 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) |
20 | 1, 19 | sylan 281 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (2nd
‘𝐵)) → 𝑥 ∈
Q) |
21 | 16, 18, 20 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈
Q) |
22 | 8 | ad3antrrr 484 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐴 ∈
P) |
23 | | simprl 521 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈ (1st
‘𝐴)) |
24 | | elprnql 7422 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
25 | 11, 24 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
26 | 22, 23, 25 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈
Q) |
27 | 10 | adantr 274 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 ∈
Q) |
28 | | addclnq 7316 |
. . . . . . . . 9
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑢
+Q 𝑡) ∈ Q) |
29 | 26, 27, 28 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈
Q) |
30 | | nqtri3or 7337 |
. . . . . . . 8
⊢ ((𝑥 ∈ Q ∧
(𝑢
+Q 𝑡) ∈ Q) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) |
31 | 21, 29, 30 | syl2anc 409 |
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥)) |
32 | 15 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵 ∈ P) |
33 | | simprl 521 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd ‘𝐵)) |
34 | | elprnqu 7423 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) |
35 | 1, 34 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) |
36 | 32, 33, 35 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ Q) |
37 | 36 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ Q) |
38 | 33 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (2nd ‘𝐵)) |
39 | | simplrr 526 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑠 +Q
𝑡) = 𝑥) |
40 | | breq1 3985 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 +Q
𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q
𝑡))) |
41 | 40 | biimprd 157 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 +Q
𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q
𝑡) → (𝑠 +Q
𝑡)
<Q (𝑢 +Q 𝑡))) |
42 | 39, 41 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) |
43 | 42 | imp 123 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡)) |
44 | | ltanqg 7341 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
45 | 44 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
46 | 26 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ Q) |
47 | 27 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑡 ∈ Q) |
48 | | addcomnqg 7322 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
49 | 48 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
50 | 45, 37, 46, 47, 49 | caovord2d 6011 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q
(𝑢
+Q 𝑡))) |
51 | 43, 50 | mpbird 166 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 <Q 𝑢) |
52 | 22 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐴 ∈ P) |
53 | 23 | adantr 274 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑢 ∈ (1st ‘𝐴)) |
54 | | prcdnql 7425 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
55 | 11, 54 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → (𝑠 <Q
𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
56 | 52, 53, 55 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝑠 <Q 𝑢 → 𝑠 ∈ (1st ‘𝐴))) |
57 | 51, 56 | mpd 13 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑠 ∈ (1st ‘𝐴)) |
58 | | rspe 2515 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴))) →
∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝐵)
∧ 𝑠 ∈
(1st ‘𝐴))) |
59 | 37, 38, 57, 58 | syl12anc 1226 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 ∈ (1st ‘𝐴))) |
60 | 16 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵 ∈ P) |
61 | | ltdfpr 7447 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) |
62 | 60, 52, 61 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝐴)))) |
63 | 59, 62 | mpbird 166 |
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝐵<P 𝐴) |
64 | | simpll3 1028 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P
𝐴) |
65 | 64 | ad3antrrr 484 |
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → ¬ 𝐵<P 𝐴) |
66 | 63, 65 | pm2.21dd 610 |
. . . . . . . . 9
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ 𝑥 <Q
(𝑢
+Q 𝑡)) → 𝑥 ∈ (2nd ‘𝐴)) |
67 | 66 | ex 114 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 <Q
(𝑢
+Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) |
68 | | simprr 522 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) |
69 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd ‘𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) |
70 | 68, 69 | syl5ibrcom 156 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd ‘𝐴))) |
71 | | prcunqu 7426 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ (𝑢 +Q
𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
72 | 11, 71 | sylan 281 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
(𝑢
+Q 𝑡) ∈ (2nd ‘𝐴)) → ((𝑢 +Q 𝑡) <Q
𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
73 | 22, 68, 72 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
<Q 𝑥 → 𝑥 ∈ (2nd ‘𝐴))) |
74 | 67, 70, 73 | 3jaod 1294 |
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑥 <Q
(𝑢
+Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q
𝑥) → 𝑥 ∈ (2nd
‘𝐴))) |
75 | 31, 74 | mpd 13 |
. . . . . 6
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑥 ∈ (2nd
‘𝐴)) |
76 | 14, 75 | rexlimddv 2588 |
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡 ∈ Q ∧ (𝑠 +Q
𝑡) = 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) |
77 | 7, 76 | rexlimddv 2588 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) ∧ (𝑠 ∈ (2nd ‘𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd ‘𝐴)) |
78 | 4, 77 | rexlimddv 2588 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd ‘𝐵)) → 𝑥 ∈ (2nd ‘𝐴)) |
79 | 78 | ex 114 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd ‘𝐵) → 𝑥 ∈ (2nd ‘𝐴))) |
80 | 79 | ssrdv 3148 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (2nd
‘𝐵) ⊆
(2nd ‘𝐴)) |