ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprlemu GIF version

Theorem aptiprlemu 7652
Description: Lemma for aptipr 7653. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprlemu ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))

Proof of Theorem aptiprlemu
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7487 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7501 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
31, 2sylan 283 . . . . 5 ((𝐵P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
433ad2antl2 1161 . . . 4 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
5 simprr 531 . . . . . 6 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥)
6 ltexnqi 7421 . . . . . 6 (𝑠 <Q 𝑥 → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
75, 6syl 14 . . . . 5 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
8 simpl1 1001 . . . . . . . 8 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐴P)
98ad2antrr 488 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝐴P)
10 simprl 529 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑡Q)
11 prop 7487 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prarloc2 7516 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1311, 12sylan 283 . . . . . . 7 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
149, 10, 13syl2anc 411 . . . . . 6 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
15 simpl2 1002 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐵P)
1615ad3antrrr 492 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
17 simpr 110 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐵))
1817ad3antrrr 492 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐵))
19 elprnqu 7494 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
201, 19sylan 283 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
2116, 18, 20syl2anc 411 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥Q)
228ad3antrrr 492 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
23 simprl 529 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
24 elprnql 7493 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2511, 24sylan 283 . . . . . . . . . 10 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2622, 23, 25syl2anc 411 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
2710adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
28 addclnq 7387 . . . . . . . . 9 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
2926, 27, 28syl2anc 411 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
30 nqtri3or 7408 . . . . . . . 8 ((𝑥Q ∧ (𝑢 +Q 𝑡) ∈ Q) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3121, 29, 30syl2anc 411 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3215adantr 276 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵P)
33 simprl 529 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd𝐵))
34 elprnqu 7494 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
351, 34sylan 283 . . . . . . . . . . . . . 14 ((𝐵P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
3632, 33, 35syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠Q)
3736ad3antrrr 492 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠Q)
3833ad3antrrr 492 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (2nd𝐵))
39 simplrr 536 . . . . . . . . . . . . . . . 16 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑠 +Q 𝑡) = 𝑥)
40 breq1 4018 . . . . . . . . . . . . . . . . 17 ((𝑠 +Q 𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q 𝑡)))
4140biimprd 158 . . . . . . . . . . . . . . . 16 ((𝑠 +Q 𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4239, 41syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4342imp 124 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡))
44 ltanqg 7412 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4544adantl 277 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4626adantr 276 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢Q)
4727adantr 276 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑡Q)
48 addcomnqg 7393 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4948adantl 277 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5045, 37, 46, 47, 49caovord2d 6057 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
5143, 50mpbird 167 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 <Q 𝑢)
5222adantr 276 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐴P)
5323adantr 276 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢 ∈ (1st𝐴))
54 prcdnql 7496 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5511, 54sylan 283 . . . . . . . . . . . . . 14 ((𝐴P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5652, 53, 55syl2anc 411 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5751, 56mpd 13 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (1st𝐴))
58 rspe 2536 . . . . . . . . . . . 12 ((𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
5937, 38, 57, 58syl12anc 1246 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
6016adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵P)
61 ltdfpr 7518 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6260, 52, 61syl2anc 411 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6359, 62mpbird 167 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵<P 𝐴)
64 simpll3 1039 . . . . . . . . . . 11 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P 𝐴)
6564ad3antrrr 492 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ¬ 𝐵<P 𝐴)
6663, 65pm2.21dd 621 . . . . . . . . 9 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑥 ∈ (2nd𝐴))
6766ex 115 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
68 simprr 531 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ (2nd𝐴))
69 eleq1 2250 . . . . . . . . 9 (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd𝐴)))
7068, 69syl5ibrcom 157 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
71 prcunqu 7497 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7211, 71sylan 283 . . . . . . . . 9 ((𝐴P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7322, 68, 72syl2anc 411 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7467, 70, 733jaod 1314 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥) → 𝑥 ∈ (2nd𝐴)))
7531, 74mpd 13 . . . . . 6 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐴))
7614, 75rexlimddv 2609 . . . . 5 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑥 ∈ (2nd𝐴))
777, 76rexlimddv 2609 . . . 4 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd𝐴))
784, 77rexlimddv 2609 . . 3 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐴))
7978ex 115 . 2 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd𝐵) → 𝑥 ∈ (2nd𝐴)))
8079ssrdv 3173 1 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 978  w3a 979   = wceq 1363  wcel 2158  wrex 2466  wss 3141  cop 3607   class class class wbr 4015  cfv 5228  (class class class)co 5888  1st c1st 6152  2nd c2nd 6153  Qcnq 7292   +Q cplq 7294   <Q cltq 7297  Pcnp 7303  <P cltp 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-2o 6431  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-enq0 7436  df-nq0 7437  df-0nq0 7438  df-plq0 7439  df-mq0 7440  df-inp 7478  df-iltp 7482
This theorem is referenced by:  aptipr  7653  suplocexprlemmu  7730
  Copyright terms: Public domain W3C validator