ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprlemu GIF version

Theorem aptiprlemu 7472
Description: Lemma for aptipr 7473. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprlemu ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))

Proof of Theorem aptiprlemu
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7307 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7321 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
31, 2sylan 281 . . . . 5 ((𝐵P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
433ad2antl2 1145 . . . 4 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
5 simprr 522 . . . . . 6 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥)
6 ltexnqi 7241 . . . . . 6 (𝑠 <Q 𝑥 → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
75, 6syl 14 . . . . 5 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
8 simpl1 985 . . . . . . . 8 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐴P)
98ad2antrr 480 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝐴P)
10 simprl 521 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑡Q)
11 prop 7307 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prarloc2 7336 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1311, 12sylan 281 . . . . . . 7 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
149, 10, 13syl2anc 409 . . . . . 6 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
15 simpl2 986 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐵P)
1615ad3antrrr 484 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
17 simpr 109 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐵))
1817ad3antrrr 484 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐵))
19 elprnqu 7314 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
201, 19sylan 281 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
2116, 18, 20syl2anc 409 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥Q)
228ad3antrrr 484 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
23 simprl 521 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
24 elprnql 7313 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2511, 24sylan 281 . . . . . . . . . 10 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2622, 23, 25syl2anc 409 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
2710adantr 274 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
28 addclnq 7207 . . . . . . . . 9 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
2926, 27, 28syl2anc 409 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
30 nqtri3or 7228 . . . . . . . 8 ((𝑥Q ∧ (𝑢 +Q 𝑡) ∈ Q) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3121, 29, 30syl2anc 409 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3215adantr 274 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵P)
33 simprl 521 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd𝐵))
34 elprnqu 7314 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
351, 34sylan 281 . . . . . . . . . . . . . 14 ((𝐵P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
3632, 33, 35syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠Q)
3736ad3antrrr 484 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠Q)
3833ad3antrrr 484 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (2nd𝐵))
39 simplrr 526 . . . . . . . . . . . . . . . 16 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑠 +Q 𝑡) = 𝑥)
40 breq1 3940 . . . . . . . . . . . . . . . . 17 ((𝑠 +Q 𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q 𝑡)))
4140biimprd 157 . . . . . . . . . . . . . . . 16 ((𝑠 +Q 𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4239, 41syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4342imp 123 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡))
44 ltanqg 7232 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4544adantl 275 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4626adantr 274 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢Q)
4727adantr 274 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑡Q)
48 addcomnqg 7213 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4948adantl 275 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5045, 37, 46, 47, 49caovord2d 5948 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
5143, 50mpbird 166 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 <Q 𝑢)
5222adantr 274 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐴P)
5323adantr 274 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢 ∈ (1st𝐴))
54 prcdnql 7316 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5511, 54sylan 281 . . . . . . . . . . . . . 14 ((𝐴P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5652, 53, 55syl2anc 409 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5751, 56mpd 13 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (1st𝐴))
58 rspe 2484 . . . . . . . . . . . 12 ((𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
5937, 38, 57, 58syl12anc 1215 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
6016adantr 274 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵P)
61 ltdfpr 7338 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6260, 52, 61syl2anc 409 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6359, 62mpbird 166 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵<P 𝐴)
64 simpll3 1023 . . . . . . . . . . 11 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P 𝐴)
6564ad3antrrr 484 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ¬ 𝐵<P 𝐴)
6663, 65pm2.21dd 610 . . . . . . . . 9 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑥 ∈ (2nd𝐴))
6766ex 114 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
68 simprr 522 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ (2nd𝐴))
69 eleq1 2203 . . . . . . . . 9 (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd𝐴)))
7068, 69syl5ibrcom 156 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
71 prcunqu 7317 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7211, 71sylan 281 . . . . . . . . 9 ((𝐴P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7322, 68, 72syl2anc 409 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7467, 70, 733jaod 1283 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥) → 𝑥 ∈ (2nd𝐴)))
7531, 74mpd 13 . . . . . 6 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐴))
7614, 75rexlimddv 2557 . . . . 5 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑥 ∈ (2nd𝐴))
777, 76rexlimddv 2557 . . . 4 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd𝐴))
784, 77rexlimddv 2557 . . 3 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐴))
7978ex 114 . 2 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd𝐵) → 𝑥 ∈ (2nd𝐴)))
8079ssrdv 3108 1 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 962  w3a 963   = wceq 1332  wcel 1481  wrex 2418  wss 3076  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   +Q cplq 7114   <Q cltq 7117  Pcnp 7123  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iltp 7302
This theorem is referenced by:  aptipr  7473  suplocexprlemmu  7550
  Copyright terms: Public domain W3C validator