ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprleml GIF version

Theorem addcanprleml 7612
Description: Lemma for addcanprg 7614. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprleml (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))

Proof of Theorem addcanprleml
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7473 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnmaddl 7488 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (1st𝐵)) → ∃𝑤Q (𝑣 +Q 𝑤) ∈ (1st𝐵))
31, 2sylan 283 . . . . . 6 ((𝐵P𝑣 ∈ (1st𝐵)) → ∃𝑤Q (𝑣 +Q 𝑤) ∈ (1st𝐵))
433ad2antl2 1160 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ 𝑣 ∈ (1st𝐵)) → ∃𝑤Q (𝑣 +Q 𝑤) ∈ (1st𝐵))
54adantlr 477 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) → ∃𝑤Q (𝑣 +Q 𝑤) ∈ (1st𝐵))
6 simprl 529 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → 𝑤Q)
7 halfnqq 7408 . . . . . 6 (𝑤Q → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
86, 7syl 14 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
9 simplll 533 . . . . . . . . . 10 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → (𝐴P𝐵P𝐶P))
109adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → (𝐴P𝐵P𝐶P))
1110simp1d 1009 . . . . . . . 8 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝐴P)
12 prop 7473 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1311, 12syl 14 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
14 simprl 529 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑡Q)
15 prarloc2 7502 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1613, 14, 15syl2anc 411 . . . . . 6 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
179ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴P𝐵P𝐶P))
1817simp1d 1009 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
1917simp2d 1010 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
20 addclpr 7535 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2118, 19, 20syl2anc 411 . . . . . . . . . 10 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴 +P 𝐵) ∈ P)
22 prop 7473 . . . . . . . . . 10 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2321, 22syl 14 . . . . . . . . 9 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2418, 12syl 14 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
25 simprl 529 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
26 elprnql 7479 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2724, 25, 26syl2anc 411 . . . . . . . . . 10 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
2819, 1syl 14 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
29 simplr 528 . . . . . . . . . . . . 13 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → 𝑣 ∈ (1st𝐵))
3029ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (1st𝐵))
31 elprnql 7479 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (1st𝐵)) → 𝑣Q)
3228, 30, 31syl2anc 411 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣Q)
33 simplrl 535 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑤Q)
3433adantr 276 . . . . . . . . . . 11 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑤Q)
35 addclnq 7373 . . . . . . . . . . 11 ((𝑣Q𝑤Q) → (𝑣 +Q 𝑤) ∈ Q)
3632, 34, 35syl2anc 411 . . . . . . . . . 10 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 +Q 𝑤) ∈ Q)
37 addclnq 7373 . . . . . . . . . 10 ((𝑢Q ∧ (𝑣 +Q 𝑤) ∈ Q) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ Q)
3827, 36, 37syl2anc 411 . . . . . . . . 9 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ Q)
39 prdisj 7490 . . . . . . . . 9 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ Q) → ¬ ((𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵))))
4023, 38, 39syl2anc 411 . . . . . . . 8 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ ((𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵))))
4118adantr 276 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝐴P)
4219adantr 276 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝐵P)
43 simplrl 535 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝑢 ∈ (1st𝐴))
44 simplrr 536 . . . . . . . . . . 11 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → (𝑣 +Q 𝑤) ∈ (1st𝐵))
4544ad2antrr 488 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑣 +Q 𝑤) ∈ (1st𝐵))
46 df-iplp 7466 . . . . . . . . . . . 12 +P = (𝑟P, 𝑠P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑟) ∧ ∈ (1st𝑠) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑟) ∧ ∈ (2nd𝑠) ∧ 𝑓 = (𝑔 +Q ))}⟩)
47 addclnq 7373 . . . . . . . . . . . 12 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
4846, 47genpprecll 7512 . . . . . . . . . . 11 ((𝐴P𝐵P) → ((𝑢 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵)) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵))))
4948imp 124 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵)))
5041, 42, 43, 45, 49syl22anc 1239 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵)))
5127adantr 276 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝑢Q)
5214ad2antrr 488 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝑡Q)
5332adantr 276 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝑣Q)
54 addcomnqg 7379 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5554adantl 277 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
56 addassnqg 7380 . . . . . . . . . . . . . 14 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
5756adantl 277 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
58 addclnq 7373 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) ∈ Q)
5958adantl 277 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) ∈ Q)
6051, 52, 53, 55, 57, 52, 59caov4d 6058 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑡) +Q (𝑣 +Q 𝑡)) = ((𝑢 +Q 𝑣) +Q (𝑡 +Q 𝑡)))
61 simprr 531 . . . . . . . . . . . . . 14 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → (𝑡 +Q 𝑡) = 𝑤)
6261ad2antrr 488 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑡 +Q 𝑡) = 𝑤)
6362oveq2d 5890 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑣) +Q (𝑡 +Q 𝑡)) = ((𝑢 +Q 𝑣) +Q 𝑤))
6433ad2antrr 488 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝑤Q)
65 addassnqg 7380 . . . . . . . . . . . . 13 ((𝑢Q𝑣Q𝑤Q) → ((𝑢 +Q 𝑣) +Q 𝑤) = (𝑢 +Q (𝑣 +Q 𝑤)))
6651, 53, 64, 65syl3anc 1238 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑣) +Q 𝑤) = (𝑢 +Q (𝑣 +Q 𝑤)))
6760, 63, 663eqtrd 2214 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑡) +Q (𝑣 +Q 𝑡)) = (𝑢 +Q (𝑣 +Q 𝑤)))
68 simplrr 536 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑢 +Q 𝑡) ∈ (2nd𝐴))
69 simpr 110 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑣 +Q 𝑡) ∈ (2nd𝐶))
7017simp3d 1011 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐶P)
7170adantr 276 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → 𝐶P)
7246, 47genppreclu 7513 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑡) +Q (𝑣 +Q 𝑡)) ∈ (2nd ‘(𝐴 +P 𝐶))))
7341, 71, 72syl2anc 411 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑡) +Q (𝑣 +Q 𝑡)) ∈ (2nd ‘(𝐴 +P 𝐶))))
7468, 69, 73mp2and 433 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q 𝑡) +Q (𝑣 +Q 𝑡)) ∈ (2nd ‘(𝐴 +P 𝐶)))
7567, 74eqeltrrd 2255 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐶)))
76 simpr 110 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐴 +P 𝐵) = (𝐴 +P 𝐶))
7776ad3antrrr 492 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → (𝐴 +P 𝐵) = (𝐴 +P 𝐶))
7877ad2antrr 488 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝐴 +P 𝐵) = (𝐴 +P 𝐶))
79 fveq2 5515 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (2nd ‘(𝐴 +P 𝐵)) = (2nd ‘(𝐴 +P 𝐶)))
8079eleq2d 2247 . . . . . . . . . . 11 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → ((𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐶))))
8178, 80syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐶))))
8275, 81mpbird 167 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵)))
8350, 82jca 306 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑣 +Q 𝑡) ∈ (2nd𝐶)) → ((𝑢 +Q (𝑣 +Q 𝑤)) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ (𝑢 +Q (𝑣 +Q 𝑤)) ∈ (2nd ‘(𝐴 +P 𝐵))))
8440, 83mtand 665 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (𝑣 +Q 𝑡) ∈ (2nd𝐶))
85 prop 7473 . . . . . . . . 9 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8670, 85syl 14 . . . . . . . 8 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
87 simplrl 535 . . . . . . . . 9 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
88 ltaddnq 7405 . . . . . . . . 9 ((𝑣Q𝑡Q) → 𝑣 <Q (𝑣 +Q 𝑡))
8932, 87, 88syl2anc 411 . . . . . . . 8 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 <Q (𝑣 +Q 𝑡))
90 prloc 7489 . . . . . . . 8 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑣 <Q (𝑣 +Q 𝑡)) → (𝑣 ∈ (1st𝐶) ∨ (𝑣 +Q 𝑡) ∈ (2nd𝐶)))
9186, 89, 90syl2anc 411 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 ∈ (1st𝐶) ∨ (𝑣 +Q 𝑡) ∈ (2nd𝐶)))
9284, 91ecased 1349 . . . . . 6 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (1st𝐶))
9316, 92rexlimddv 2599 . . . . 5 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑣 ∈ (1st𝐶))
948, 93rexlimddv 2599 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) ∧ (𝑤Q ∧ (𝑣 +Q 𝑤) ∈ (1st𝐵))) → 𝑣 ∈ (1st𝐶))
955, 94rexlimddv 2599 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (1st𝐵)) → 𝑣 ∈ (1st𝐶))
9695ex 115 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (1st𝐵) → 𝑣 ∈ (1st𝐶)))
9796ssrdv 3161 1 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wrex 2456  wss 3129  cop 3595   class class class wbr 4003  cfv 5216  (class class class)co 5874  1st c1st 6138  2nd c2nd 6139  Qcnq 7278   +Q cplq 7280   <Q cltq 7283  Pcnp 7289   +P cpp 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iplp 7466
This theorem is referenced by:  addcanprg  7614
  Copyright terms: Public domain W3C validator