ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcofo GIF version

Theorem fcofo 5752
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)

Proof of Theorem fcofo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 987 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴𝐵)
2 ffvelrn 5618 . . . . 5 ((𝑆:𝐵𝐴𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
323ad2antl2 1150 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
4 simpl3 992 . . . . . 6 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝐹𝑆) = ( I ↾ 𝐵))
54fveq1d 5488 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (( I ↾ 𝐵)‘𝑦))
6 fvco3 5557 . . . . . 6 ((𝑆:𝐵𝐴𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
763ad2antl2 1150 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
8 fvresi 5678 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
98adantl 275 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
105, 7, 93eqtr3rd 2207 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑆𝑦)))
11 fveq2 5486 . . . . . 6 (𝑥 = (𝑆𝑦) → (𝐹𝑥) = (𝐹‘(𝑆𝑦)))
1211eqeq2d 2177 . . . . 5 (𝑥 = (𝑆𝑦) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (𝐹‘(𝑆𝑦))))
1312rspcev 2830 . . . 4 (((𝑆𝑦) ∈ 𝐴𝑦 = (𝐹‘(𝑆𝑦))) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
143, 10, 13syl2anc 409 . . 3 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1514ralrimiva 2539 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
16 dffo3 5632 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
171, 15, 16sylanbrc 414 1 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445   I cid 4266  cres 4606  ccom 4608  wf 5184  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  fcof1o  5757
  Copyright terms: Public domain W3C validator