ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modremain GIF version

Theorem modremain 12094
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
modremain ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑁   𝑧,𝑅

Proof of Theorem modremain
StepHypRef Expression
1 eqcom 2198 . 2 ((𝑁 mod 𝐷) = 𝑅𝑅 = (𝑁 mod 𝐷))
2 divalgmodcl 12093 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
323adant3r 1237 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
4 ibar 301 . . . . 5 (𝑅 < 𝐷 → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
54adantl 277 . . . 4 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
653ad2ant3 1022 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
7 nnz 9345 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
873ad2ant2 1021 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝐷 ∈ ℤ)
9 simp1 999 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℤ)
10 nn0z 9346 . . . . . . . 8 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
1110adantr 276 . . . . . . 7 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℤ)
12113ad2ant3 1022 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℤ)
139, 12zsubcld 9453 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑁𝑅) ∈ ℤ)
14 divides 11954 . . . . 5 ((𝐷 ∈ ℤ ∧ (𝑁𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
158, 13, 14syl2anc 411 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅)))
16 eqcom 2198 . . . . . 6 ((𝑧 · 𝐷) = (𝑁𝑅) ↔ (𝑁𝑅) = (𝑧 · 𝐷))
17 zcn 9331 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
18173ad2ant1 1020 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑁 ∈ ℂ)
1918adantr 276 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ)
20 nn0cn 9259 . . . . . . . . . 10 (𝑅 ∈ ℕ0𝑅 ∈ ℂ)
2120adantr 276 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝑅 < 𝐷) → 𝑅 ∈ ℂ)
22213ad2ant3 1022 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → 𝑅 ∈ ℂ)
2322adantr 276 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ)
24 simpr 110 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
258adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ)
2624, 25zmulcld 9454 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ)
2726zcnd 9449 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ)
2819, 23, 27subadd2d 8356 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
2916, 28bitrid 192 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3029rexbidva 2494 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
3115, 30bitrd 188 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝐷 ∥ (𝑁𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
323, 6, 313bitr2d 216 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
331, 32bitrid 192 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4033  (class class class)co 5922  cc 7877   + caddc 7882   · cmul 7884   < clt 8061  cmin 8197  cn 8990  0cn0 9249  cz 9326   mod cmo 10414  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by:  bezoutlemnewy  12163  bezoutlemstep  12164
  Copyright terms: Public domain W3C validator