![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modremain | GIF version |
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
modremain | ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2179 | . 2 ⊢ ((𝑁 mod 𝐷) = 𝑅 ↔ 𝑅 = (𝑁 mod 𝐷)) | |
2 | divalgmodcl 11916 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
3 | 2 | 3adant3r 1235 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
4 | ibar 301 | . . . . 5 ⊢ (𝑅 < 𝐷 → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
5 | 4 | adantl 277 | . . . 4 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
6 | 5 | 3ad2ant3 1020 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
7 | nnz 9261 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℤ) | |
8 | 7 | 3ad2ant2 1019 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝐷 ∈ ℤ) |
9 | simp1 997 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℤ) | |
10 | nn0z 9262 | . . . . . . . 8 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℤ) | |
11 | 10 | adantr 276 | . . . . . . 7 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℤ) |
12 | 11 | 3ad2ant3 1020 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℤ) |
13 | 9, 12 | zsubcld 9369 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑁 − 𝑅) ∈ ℤ) |
14 | divides 11780 | . . . . 5 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) | |
15 | 8, 13, 14 | syl2anc 411 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) |
16 | eqcom 2179 | . . . . . 6 ⊢ ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ (𝑁 − 𝑅) = (𝑧 · 𝐷)) | |
17 | zcn 9247 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
18 | 17 | 3ad2ant1 1018 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℂ) |
19 | 18 | adantr 276 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ) |
20 | nn0cn 9175 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℂ) | |
21 | 20 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℂ) |
22 | 21 | 3ad2ant3 1020 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℂ) |
23 | 22 | adantr 276 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ) |
24 | simpr 110 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
25 | 8 | adantr 276 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ) |
26 | 24, 25 | zmulcld 9370 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ) |
27 | 26 | zcnd 9365 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ) |
28 | 19, 23, 27 | subadd2d 8277 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁 − 𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
29 | 16, 28 | bitrid 192 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
30 | 29 | rexbidva 2474 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
31 | 15, 30 | bitrd 188 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
32 | 3, 6, 31 | 3bitr2d 216 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
33 | 1, 32 | bitrid 192 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4000 (class class class)co 5869 ℂcc 7800 + caddc 7805 · cmul 7807 < clt 7982 − cmin 8118 ℕcn 8908 ℕ0cn0 9165 ℤcz 9242 mod cmo 10308 ∥ cdvds 11778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 |
This theorem is referenced by: bezoutlemnewy 11980 bezoutlemstep 11981 |
Copyright terms: Public domain | W3C validator |