![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modremain | GIF version |
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
modremain | ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2117 | . 2 ⊢ ((𝑁 mod 𝐷) = 𝑅 ↔ 𝑅 = (𝑁 mod 𝐷)) | |
2 | divalgmodcl 11473 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
3 | 2 | 3adant3r 1196 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
4 | ibar 297 | . . . . 5 ⊢ (𝑅 < 𝐷 → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
5 | 4 | adantl 273 | . . . 4 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
6 | 5 | 3ad2ant3 987 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
7 | nnz 8977 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℤ) | |
8 | 7 | 3ad2ant2 986 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝐷 ∈ ℤ) |
9 | simp1 964 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℤ) | |
10 | nn0z 8978 | . . . . . . . 8 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℤ) | |
11 | 10 | adantr 272 | . . . . . . 7 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℤ) |
12 | 11 | 3ad2ant3 987 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℤ) |
13 | 9, 12 | zsubcld 9082 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑁 − 𝑅) ∈ ℤ) |
14 | divides 11343 | . . . . 5 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) | |
15 | 8, 13, 14 | syl2anc 406 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) |
16 | eqcom 2117 | . . . . . 6 ⊢ ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ (𝑁 − 𝑅) = (𝑧 · 𝐷)) | |
17 | zcn 8963 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
18 | 17 | 3ad2ant1 985 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℂ) |
19 | 18 | adantr 272 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ) |
20 | nn0cn 8891 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℂ) | |
21 | 20 | adantr 272 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℂ) |
22 | 21 | 3ad2ant3 987 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℂ) |
23 | 22 | adantr 272 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ) |
24 | simpr 109 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
25 | 8 | adantr 272 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ) |
26 | 24, 25 | zmulcld 9083 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ) |
27 | 26 | zcnd 9078 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ) |
28 | 19, 23, 27 | subadd2d 8015 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁 − 𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
29 | 16, 28 | syl5bb 191 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
30 | 29 | rexbidva 2408 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
31 | 15, 30 | bitrd 187 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
32 | 3, 6, 31 | 3bitr2d 215 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
33 | 1, 32 | syl5bb 191 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 ∃wrex 2391 class class class wbr 3895 (class class class)co 5728 ℂcc 7545 + caddc 7550 · cmul 7552 < clt 7724 − cmin 7856 ℕcn 8630 ℕ0cn0 8881 ℤcz 8958 mod cmo 9988 ∥ cdvds 11341 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-n0 8882 df-z 8959 df-uz 9229 df-q 9314 df-rp 9344 df-fl 9936 df-mod 9989 df-seqfrec 10112 df-exp 10186 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 df-dvds 11342 |
This theorem is referenced by: bezoutlemnewy 11530 bezoutlemstep 11531 |
Copyright terms: Public domain | W3C validator |