| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modremain | GIF version | ||
| Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| modremain | ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ ((𝑁 mod 𝐷) = 𝑅 ↔ 𝑅 = (𝑁 mod 𝐷)) | |
| 2 | divalgmodcl 12309 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
| 3 | 2 | 3adant3r 1238 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 4 | ibar 301 | . . . . 5 ⊢ (𝑅 < 𝐷 → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 6 | 5 | 3ad2ant3 1023 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 7 | nnz 9406 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℤ) | |
| 8 | 7 | 3ad2ant2 1022 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝐷 ∈ ℤ) |
| 9 | simp1 1000 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℤ) | |
| 10 | nn0z 9407 | . . . . . . . 8 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℤ) | |
| 11 | 10 | adantr 276 | . . . . . . 7 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℤ) |
| 12 | 11 | 3ad2ant3 1023 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℤ) |
| 13 | 9, 12 | zsubcld 9515 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑁 − 𝑅) ∈ ℤ) |
| 14 | divides 12170 | . . . . 5 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) | |
| 15 | 8, 13, 14 | syl2anc 411 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅))) |
| 16 | eqcom 2208 | . . . . . 6 ⊢ ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ (𝑁 − 𝑅) = (𝑧 · 𝐷)) | |
| 17 | zcn 9392 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 18 | 17 | 3ad2ant1 1021 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑁 ∈ ℂ) |
| 19 | 18 | adantr 276 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 20 | nn0cn 9320 | . . . . . . . . . 10 ⊢ (𝑅 ∈ ℕ0 → 𝑅 ∈ ℂ) | |
| 21 | 20 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷) → 𝑅 ∈ ℂ) |
| 22 | 21 | 3ad2ant3 1023 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → 𝑅 ∈ ℂ) |
| 23 | 22 | adantr 276 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ ℂ) |
| 24 | simpr 110 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
| 25 | 8 | adantr 276 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → 𝐷 ∈ ℤ) |
| 26 | 24, 25 | zmulcld 9516 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℤ) |
| 27 | 26 | zcnd 9511 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → (𝑧 · 𝐷) ∈ ℂ) |
| 28 | 19, 23, 27 | subadd2d 8417 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑁 − 𝑅) = (𝑧 · 𝐷) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 29 | 16, 28 | bitrid 192 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) ∧ 𝑧 ∈ ℤ) → ((𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 30 | 29 | rexbidva 2504 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (∃𝑧 ∈ ℤ (𝑧 · 𝐷) = (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 31 | 15, 30 | bitrd 188 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝐷 ∥ (𝑁 − 𝑅) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 32 | 3, 6, 31 | 3bitr2d 216 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → (𝑅 = (𝑁 mod 𝐷) ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| 33 | 1, 32 | bitrid 192 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4050 (class class class)co 5956 ℂcc 7938 + caddc 7943 · cmul 7945 < clt 8122 − cmin 8258 ℕcn 9051 ℕ0cn0 9310 ℤcz 9387 mod cmo 10484 ∥ cdvds 12168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-exp 10701 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-dvds 12169 |
| This theorem is referenced by: bezoutlemnewy 12387 bezoutlemstep 12388 |
| Copyright terms: Public domain | W3C validator |