ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apmul1 GIF version

Theorem apmul1 8747
Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
apmul1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด # ๐ต โ†” (๐ด ยท ๐ถ) # (๐ต ยท ๐ถ)))

Proof of Theorem apmul1
StepHypRef Expression
1 simp1 997 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ๐ด โˆˆ โ„‚)
2 simp3l 1025 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ๐ถ โˆˆ โ„‚)
3 simp3r 1026 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ๐ถ # 0)
42, 3recclapd 8740 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (1 / ๐ถ) โˆˆ โ„‚)
51, 2, 4mulassd 7983 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ((๐ด ยท ๐ถ) ยท (1 / ๐ถ)) = (๐ด ยท (๐ถ ยท (1 / ๐ถ))))
62, 3recidapd 8742 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ถ ยท (1 / ๐ถ)) = 1)
76oveq2d 5893 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด ยท (๐ถ ยท (1 / ๐ถ))) = (๐ด ยท 1))
81mulridd 7976 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด ยท 1) = ๐ด)
95, 7, 83eqtrd 2214 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ((๐ด ยท ๐ถ) ยท (1 / ๐ถ)) = ๐ด)
10 simp2 998 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ๐ต โˆˆ โ„‚)
1110, 2, 4mulassd 7983 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ((๐ต ยท ๐ถ) ยท (1 / ๐ถ)) = (๐ต ยท (๐ถ ยท (1 / ๐ถ))))
126oveq2d 5893 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ต ยท (๐ถ ยท (1 / ๐ถ))) = (๐ต ยท 1))
1310mulridd 7976 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ต ยท 1) = ๐ต)
1411, 12, 133eqtrd 2214 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ((๐ต ยท ๐ถ) ยท (1 / ๐ถ)) = ๐ต)
159, 14breq12d 4018 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (((๐ด ยท ๐ถ) ยท (1 / ๐ถ)) # ((๐ต ยท ๐ถ) ยท (1 / ๐ถ)) โ†” ๐ด # ๐ต))
161, 2mulcld 7980 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„‚)
1710, 2mulcld 7980 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
18 mulext1 8571 . . . 4 (((๐ด ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) โˆˆ โ„‚ โˆง (1 / ๐ถ) โˆˆ โ„‚) โ†’ (((๐ด ยท ๐ถ) ยท (1 / ๐ถ)) # ((๐ต ยท ๐ถ) ยท (1 / ๐ถ)) โ†’ (๐ด ยท ๐ถ) # (๐ต ยท ๐ถ)))
1916, 17, 4, 18syl3anc 1238 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (((๐ด ยท ๐ถ) ยท (1 / ๐ถ)) # ((๐ต ยท ๐ถ) ยท (1 / ๐ถ)) โ†’ (๐ด ยท ๐ถ) # (๐ต ยท ๐ถ)))
2015, 19sylbird 170 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด # ๐ต โ†’ (๐ด ยท ๐ถ) # (๐ต ยท ๐ถ)))
21 mulext1 8571 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) # (๐ต ยท ๐ถ) โ†’ ๐ด # ๐ต))
22213adant3r 1235 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ ((๐ด ยท ๐ถ) # (๐ต ยท ๐ถ) โ†’ ๐ด # ๐ต))
2320, 22impbid 129 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ด # ๐ต โ†” (๐ด ยท ๐ถ) # (๐ต ยท ๐ถ)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   โˆˆ wcel 2148   class class class wbr 4005  (class class class)co 5877  โ„‚cc 7811  0cc0 7813  1c1 7814   ยท cmul 7818   # cap 8540   / cdiv 8631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632
This theorem is referenced by:  apmul2  8748  divap1d  8760  apdivmuld  8772  qapne  9641  apcxp2  14397
  Copyright terms: Public domain W3C validator