![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpexp12i | GIF version |
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
Ref | Expression |
---|---|
rpexp12i | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpexp1i 12148 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) | |
2 | 1 | 3adant3r 1235 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) |
3 | simp2 998 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝐵 ∈ ℤ) | |
4 | simp1 997 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝐴 ∈ ℤ) | |
5 | simp3l 1025 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0) | |
6 | zexpcl 10532 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴↑𝑀) ∈ ℤ) | |
7 | 4, 5, 6 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝐴↑𝑀) ∈ ℤ) |
8 | simp3r 1026 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0) | |
9 | rpexp1i 12148 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (𝐴↑𝑀) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐵 gcd (𝐴↑𝑀)) = 1 → ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) | |
10 | 3, 7, 8, 9 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐵 gcd (𝐴↑𝑀)) = 1 → ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) |
11 | gcdcom 11968 | . . . . 5 ⊢ (((𝐴↑𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑𝑀) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑀))) | |
12 | 7, 3, 11 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴↑𝑀) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑀))) |
13 | 12 | eqeq1d 2186 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd (𝐴↑𝑀)) = 1)) |
14 | zexpcl 10532 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵↑𝑁) ∈ ℤ) | |
15 | 3, 8, 14 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝐵↑𝑁) ∈ ℤ) |
16 | gcdcom 11968 | . . . . 5 ⊢ (((𝐴↑𝑀) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd (𝐴↑𝑀))) | |
17 | 7, 15, 16 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd (𝐴↑𝑀))) |
18 | 17 | eqeq1d 2186 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1 ↔ ((𝐵↑𝑁) gcd (𝐴↑𝑀)) = 1)) |
19 | 10, 13, 18 | 3imtr4d 203 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (((𝐴↑𝑀) gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
20 | 2, 19 | syld 45 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 (class class class)co 5874 1c1 7811 ℕ0cn0 9174 ℤcz 9251 ↑cexp 10516 gcd cgcd 11937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-1o 6416 df-2o 6417 df-er 6534 df-en 6740 df-sup 6982 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-n0 9175 df-z 9252 df-uz 9527 df-q 9618 df-rp 9652 df-fz 10007 df-fzo 10140 df-fl 10267 df-mod 10320 df-seqfrec 10443 df-exp 10517 df-cj 10846 df-re 10847 df-im 10848 df-rsqrt 11002 df-abs 11003 df-dvds 11790 df-gcd 11938 df-prm 12102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |