ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp12i GIF version

Theorem rpexp12i 11040
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp12i ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))

Proof of Theorem rpexp12i
StepHypRef Expression
1 rpexp1i 11039 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
213adant3r 1169 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
3 simp2 942 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐵 ∈ ℤ)
4 simp1 941 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐴 ∈ ℤ)
5 simp3l 969 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
6 zexpcl 9872 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℤ)
74, 5, 6syl2anc 403 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝐴𝑀) ∈ ℤ)
8 simp3r 970 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
9 rpexp1i 11039 . . . 4 ((𝐵 ∈ ℤ ∧ (𝐴𝑀) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐵 gcd (𝐴𝑀)) = 1 → ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
103, 7, 8, 9syl3anc 1172 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐵 gcd (𝐴𝑀)) = 1 → ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
11 gcdcom 10871 . . . . 5 (((𝐴𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑀) gcd 𝐵) = (𝐵 gcd (𝐴𝑀)))
127, 3, 11syl2anc 403 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴𝑀) gcd 𝐵) = (𝐵 gcd (𝐴𝑀)))
1312eqeq1d 2093 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd 𝐵) = 1 ↔ (𝐵 gcd (𝐴𝑀)) = 1))
14 zexpcl 9872 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℤ)
153, 8, 14syl2anc 403 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝐵𝑁) ∈ ℤ)
16 gcdcom 10871 . . . . 5 (((𝐴𝑀) ∈ ℤ ∧ (𝐵𝑁) ∈ ℤ) → ((𝐴𝑀) gcd (𝐵𝑁)) = ((𝐵𝑁) gcd (𝐴𝑀)))
177, 15, 16syl2anc 403 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴𝑀) gcd (𝐵𝑁)) = ((𝐵𝑁) gcd (𝐴𝑀)))
1817eqeq1d 2093 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd (𝐵𝑁)) = 1 ↔ ((𝐵𝑁) gcd (𝐴𝑀)) = 1))
1910, 13, 183imtr4d 201 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (((𝐴𝑀) gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))
202, 19syld 44 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 922   = wceq 1287  wcel 1436  (class class class)co 5615  1c1 7298  0cn0 8609  cz 8686  cexp 9856   gcd cgcd 10844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-1o 6137  df-2o 6138  df-er 6246  df-en 6412  df-sup 6626  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-fz 9360  df-fzo 9485  df-fl 9608  df-mod 9661  df-iseq 9783  df-iexp 9857  df-cj 10175  df-re 10176  df-im 10177  df-rsqrt 10330  df-abs 10331  df-dvds 10703  df-gcd 10845  df-prm 10996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator