ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul2 GIF version

Theorem ltmul2 8827
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 8563 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
2 recn 7958 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
3 recn 7958 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 mulcom 7954 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
53, 4sylan 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
653adant2 1017 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
7 recn 7958 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 mulcom 7954 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
97, 8sylan 283 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1093adant1 1016 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
116, 10breq12d 4028 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
122, 11syl3an3 1283 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
13123adant3r 1236 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
141, 13bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158   class class class wbr 4015  (class class class)co 5888  cc 7823  cr 7824  0cc0 7825   · cmul 7830   < clt 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltadd 7941  ax-pre-mulgt0 7942
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-sub 8144  df-neg 8145
This theorem is referenced by:  ltmul12a  8831  mulgt1  8834  ltmulgt11  8835  lt2msq1  8856  ltdiv2  8858  ltmul2i  8894  ltmul2d  9753  ef01bndlem  11778  cos01gt0  11784  sin4lt0  11788  pockthg  12369  tangtx  14612  lgsdilem  14781
  Copyright terms: Public domain W3C validator