| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds0lem | GIF version | ||
| Description: A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds0lem | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . . . . . . 9 ⊢ (𝑥 = 𝐾 → (𝑥 · 𝑀) = (𝐾 · 𝑀)) | |
| 2 | 1 | eqeq1d 2205 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → ((𝑥 · 𝑀) = 𝑁 ↔ (𝐾 · 𝑀) = 𝑁)) |
| 3 | 2 | rspcev 2868 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
| 4 | 3 | adantl 277 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
| 5 | divides 11954 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) | |
| 6 | 5 | adantr 276 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) |
| 7 | 4, 6 | mpbird 167 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → 𝑀 ∥ 𝑁) |
| 8 | 7 | expr 375 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 9 | 8 | 3impa 1196 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 10 | 9 | 3comr 1213 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 11 | 10 | imp 124 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 (class class class)co 5922 · cmul 7884 ℤcz 9326 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-iota 5219 df-fv 5266 df-ov 5925 df-dvds 11953 |
| This theorem is referenced by: iddvds 11969 1dvds 11970 dvds0 11971 dvdsmul1 11978 dvdsmul2 11979 divalgmod 12092 oddpwdclemxy 12337 ex-dvds 15376 |
| Copyright terms: Public domain | W3C validator |