| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | Unicode version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3comr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3coml 1212 |
. 2
|
| 3 | 2 | 3coml 1212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnacan 6579 le2tri3i 8152 ltaddsublt 8615 div12ap 8738 lemul12b 8905 zdivadd 9432 zdivmul 9433 elfz 10106 fzmmmeqm 10150 fzrev 10176 absdiflt 11274 absdifle 11275 dvds0lem 11983 dvdsmulc 12001 dvds2add 12007 dvds2sub 12008 dvdstr 12010 lcmdvds 12272 psmettri2 14648 xmettri2 14681 |
| Copyright terms: Public domain | W3C validator |