ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr Unicode version

Theorem 3comr 1213
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3comr  |-  ( ( ch  /\  ph  /\  ps )  ->  th )

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213coml 1212 . 2  |-  ( ( ps  /\  ch  /\  ph )  ->  th )
323coml 1212 1  |-  ( ( ch  /\  ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnacan  6579  le2tri3i  8152  ltaddsublt  8615  div12ap  8738  lemul12b  8905  zdivadd  9432  zdivmul  9433  elfz  10106  fzmmmeqm  10150  fzrev  10176  absdiflt  11274  absdifle  11275  dvds0lem  11983  dvdsmulc  12001  dvds2add  12007  dvds2sub  12008  dvdstr  12010  lcmdvds  12272  psmettri2  14648  xmettri2  14681
  Copyright terms: Public domain W3C validator