| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | Unicode version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3comr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3coml 1234 |
. 2
|
| 3 | 2 | 3coml 1234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: nnacan 6658 le2tri3i 8255 ltaddsublt 8718 div12ap 8841 lemul12b 9008 zdivadd 9536 zdivmul 9537 elfz 10210 fzmmmeqm 10254 fzrev 10280 absdiflt 11603 absdifle 11604 dvds0lem 12312 dvdsmulc 12330 dvds2add 12336 dvds2sub 12337 dvdstr 12339 lcmdvds 12601 psmettri2 15002 xmettri2 15035 |
| Copyright terms: Public domain | W3C validator |