ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr Unicode version

Theorem 3comr 1214
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3comr  |-  ( ( ch  /\  ph  /\  ps )  ->  th )

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213coml 1213 . 2  |-  ( ( ps  /\  ch  /\  ph )  ->  th )
323coml 1213 1  |-  ( ( ch  /\  ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nnacan  6600  le2tri3i  8183  ltaddsublt  8646  div12ap  8769  lemul12b  8936  zdivadd  9464  zdivmul  9465  elfz  10138  fzmmmeqm  10182  fzrev  10208  absdiflt  11436  absdifle  11437  dvds0lem  12145  dvdsmulc  12163  dvds2add  12169  dvds2sub  12170  dvdstr  12172  lcmdvds  12434  psmettri2  14833  xmettri2  14866
  Copyright terms: Public domain W3C validator