| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | Unicode version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3comr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3coml 1213 |
. 2
|
| 3 | 2 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnacan 6600 le2tri3i 8183 ltaddsublt 8646 div12ap 8769 lemul12b 8936 zdivadd 9464 zdivmul 9465 elfz 10138 fzmmmeqm 10182 fzrev 10208 absdiflt 11436 absdifle 11437 dvds0lem 12145 dvdsmulc 12163 dvds2add 12169 dvds2sub 12170 dvdstr 12172 lcmdvds 12434 psmettri2 14833 xmettri2 14866 |
| Copyright terms: Public domain | W3C validator |