| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | Unicode version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3comr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3coml 1213 |
. 2
|
| 3 | 2 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnacan 6621 le2tri3i 8216 ltaddsublt 8679 div12ap 8802 lemul12b 8969 zdivadd 9497 zdivmul 9498 elfz 10171 fzmmmeqm 10215 fzrev 10241 absdiflt 11518 absdifle 11519 dvds0lem 12227 dvdsmulc 12245 dvds2add 12251 dvds2sub 12252 dvdstr 12254 lcmdvds 12516 psmettri2 14915 xmettri2 14948 |
| Copyright terms: Public domain | W3C validator |