| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | Unicode version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3comr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3coml 1213 |
. 2
|
| 3 | 2 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnacan 6598 le2tri3i 8181 ltaddsublt 8644 div12ap 8767 lemul12b 8934 zdivadd 9462 zdivmul 9463 elfz 10136 fzmmmeqm 10180 fzrev 10206 absdiflt 11403 absdifle 11404 dvds0lem 12112 dvdsmulc 12130 dvds2add 12136 dvds2sub 12137 dvdstr 12139 lcmdvds 12401 psmettri2 14800 xmettri2 14833 |
| Copyright terms: Public domain | W3C validator |