ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr Unicode version

Theorem 3comr 1211
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3comr  |-  ( ( ch  /\  ph  /\  ps )  ->  th )

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213coml 1210 . 2  |-  ( ( ps  /\  ch  /\  ph )  ->  th )
323coml 1210 1  |-  ( ( ch  /\  ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  nnacan  6515  le2tri3i  8068  ltaddsublt  8530  div12ap  8653  lemul12b  8820  zdivadd  9344  zdivmul  9345  elfz  10016  fzmmmeqm  10060  fzrev  10086  absdiflt  11103  absdifle  11104  dvds0lem  11810  dvdsmulc  11828  dvds2add  11834  dvds2sub  11835  dvdstr  11837  lcmdvds  12081  psmettri2  13913  xmettri2  13946
  Copyright terms: Public domain W3C validator