ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr Unicode version

Theorem 3comr 1214
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3comr  |-  ( ( ch  /\  ph  /\  ps )  ->  th )

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213coml 1213 . 2  |-  ( ( ps  /\  ch  /\  ph )  ->  th )
323coml 1213 1  |-  ( ( ch  /\  ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nnacan  6598  le2tri3i  8181  ltaddsublt  8644  div12ap  8767  lemul12b  8934  zdivadd  9462  zdivmul  9463  elfz  10136  fzmmmeqm  10180  fzrev  10206  absdiflt  11403  absdifle  11404  dvds0lem  12112  dvdsmulc  12130  dvds2add  12136  dvds2sub  12137  dvdstr  12139  lcmdvds  12401  psmettri2  14800  xmettri2  14833
  Copyright terms: Public domain W3C validator