ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev GIF version

Theorem fzrev 10208
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))

Proof of Theorem fzrev
StepHypRef Expression
1 zre 9378 . . . . . . . 8 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
2 zre 9378 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3 zre 9378 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 suble 8515 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
51, 2, 3, 4syl3an 1292 . . . . . . 7 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
653comr 1214 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
763expb 1207 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
87adantll 476 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
9 zre 9378 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
10 lesub 8516 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
119, 1, 2, 10syl3an 1292 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
12113expb 1207 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
1312adantlr 477 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
148, 13anbi12d 473 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
15 ancom 266 . . 3 (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁))
1614, 15bitr3di 195 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
17 simprr 531 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ)
18 zsubcl 9415 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
1918ancoms 268 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
2019ad2ant2lr 510 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑁) ∈ ℤ)
21 zsubcl 9415 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2221ancoms 268 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2322ad2ant2r 509 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑀) ∈ ℤ)
24 elfz 10138 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝑁) ∈ ℤ ∧ (𝐽𝑀) ∈ ℤ) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
2517, 20, 23, 24syl3anc 1250 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
26 zsubcl 9415 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
2726adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝐾) ∈ ℤ)
28 simpll 527 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℤ)
29 simplr 528 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑁 ∈ ℤ)
30 elfz 10138 . . 3 (((𝐽𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3127, 28, 29, 30syl3anc 1250 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3216, 25, 313bitr4d 220 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176   class class class wbr 4045  (class class class)co 5946  cr 7926  cle 8110  cmin 8245  cz 9374  ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-fz 10133
This theorem is referenced by:  fzrev2  10209  fzrev3  10211  fzrevral  10229  fsumrev  11787  fprodrev  11963
  Copyright terms: Public domain W3C validator