ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev GIF version

Theorem fzrev 10084
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))

Proof of Theorem fzrev
StepHypRef Expression
1 zre 9257 . . . . . . . 8 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
2 zre 9257 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3 zre 9257 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 suble 8397 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
51, 2, 3, 4syl3an 1280 . . . . . . 7 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
653comr 1211 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
763expb 1204 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
87adantll 476 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ≤ 𝑁 ↔ (𝐽𝑁) ≤ 𝐾))
9 zre 9257 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
10 lesub 8398 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
119, 1, 2, 10syl3an 1280 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
12113expb 1204 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
1312adantlr 477 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑀 ≤ (𝐽𝐾) ↔ 𝐾 ≤ (𝐽𝑀)))
148, 13anbi12d 473 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
15 ancom 266 . . 3 (((𝐽𝐾) ≤ 𝑁𝑀 ≤ (𝐽𝐾)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁))
1614, 15bitr3di 195 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀)) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
17 simprr 531 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ)
18 zsubcl 9294 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
1918ancoms 268 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑁) ∈ ℤ)
2019ad2ant2lr 510 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑁) ∈ ℤ)
21 zsubcl 9294 . . . . 5 ((𝐽 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2221ancoms 268 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐽𝑀) ∈ ℤ)
2322ad2ant2r 509 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝑀) ∈ ℤ)
24 elfz 10014 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝑁) ∈ ℤ ∧ (𝐽𝑀) ∈ ℤ) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
2517, 20, 23, 24syl3anc 1238 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ ((𝐽𝑁) ≤ 𝐾𝐾 ≤ (𝐽𝑀))))
26 zsubcl 9294 . . . 4 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾) ∈ ℤ)
2726adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽𝐾) ∈ ℤ)
28 simpll 527 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℤ)
29 simplr 528 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑁 ∈ ℤ)
30 elfz 10014 . . 3 (((𝐽𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3127, 28, 29, 30syl3anc 1238 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝐾) ∈ (𝑀...𝑁) ↔ (𝑀 ≤ (𝐽𝐾) ∧ (𝐽𝐾) ≤ 𝑁)))
3216, 25, 313bitr4d 220 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4004  (class class class)co 5875  cr 7810  cle 7993  cmin 8128  cz 9253  ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-fz 10009
This theorem is referenced by:  fzrev2  10085  fzrev3  10087  fzrevral  10105  fsumrev  11451  fprodrev  11627
  Copyright terms: Public domain W3C validator