![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zdivadd | GIF version |
Description: Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
zdivadd | ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 8911 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
2 | zcn 8911 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
3 | nncn 8586 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℂ) | |
4 | nnap0 8607 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → 𝐷 # 0) | |
5 | 3, 4 | jca 302 | . . . . 5 ⊢ (𝐷 ∈ ℕ → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
6 | divdirap 8318 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 + 𝐵) / 𝐷) = ((𝐴 / 𝐷) + (𝐵 / 𝐷))) | |
7 | 1, 2, 5, 6 | syl3an 1226 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐴 + 𝐵) / 𝐷) = ((𝐴 / 𝐷) + (𝐵 / 𝐷))) |
8 | 7 | 3comr 1157 | . . 3 ⊢ ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) / 𝐷) = ((𝐴 / 𝐷) + (𝐵 / 𝐷))) |
9 | 8 | adantr 272 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) = ((𝐴 / 𝐷) + (𝐵 / 𝐷))) |
10 | zaddcl 8946 | . . 3 ⊢ (((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ) → ((𝐴 / 𝐷) + (𝐵 / 𝐷)) ∈ ℤ) | |
11 | 10 | adantl 273 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 / 𝐷) + (𝐵 / 𝐷)) ∈ ℤ) |
12 | 9, 11 | eqeltrd 2176 | 1 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 ℂcc 7498 0cc0 7500 + caddc 7503 # cap 8209 / cdiv 8293 ℕcn 8578 ℤcz 8906 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-n0 8830 df-z 8907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |