ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3ri GIF version

Theorem 3eqtr3ri 2226
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3ri 𝐷 = 𝐶

Proof of Theorem 3eqtr3ri
StepHypRef Expression
1 3eqtr3i.3 . 2 𝐵 = 𝐷
2 3eqtr3i.1 . . 3 𝐴 = 𝐵
3 3eqtr3i.2 . . 3 𝐴 = 𝐶
42, 3eqtr3i 2219 . 2 𝐵 = 𝐶
51, 4eqtr3i 2219 1 𝐷 = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  indif2  3408  resdm2  5161  co01  5185  cocnvres  5195  undifdc  6994  1mhlfehlf  9226  rei  11081  resqrexlemover  11192  cos1bnd  11941  m1bits  12142  6gcd4e2  12187  3lcm2e6  12353  karatsuba  12624  cosq23lt0  15153  sincos4thpi  15160  sincos6thpi  15162  cosq34lt1  15170
  Copyright terms: Public domain W3C validator