ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3ri GIF version

Theorem 3eqtr3ri 2236
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3ri 𝐷 = 𝐶

Proof of Theorem 3eqtr3ri
StepHypRef Expression
1 3eqtr3i.3 . 2 𝐵 = 𝐷
2 3eqtr3i.1 . . 3 𝐴 = 𝐵
3 3eqtr3i.2 . . 3 𝐴 = 𝐶
42, 3eqtr3i 2229 . 2 𝐵 = 𝐶
51, 4eqtr3i 2229 1 𝐷 = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199
This theorem is referenced by:  indif2  3421  resdm2  5187  co01  5211  cocnvres  5221  undifdc  7042  1mhlfehlf  9285  rei  11295  resqrexlemover  11406  cos1bnd  12155  m1bits  12356  6gcd4e2  12401  3lcm2e6  12567  karatsuba  12838  cosq23lt0  15390  sincos4thpi  15397  sincos6thpi  15399  cosq34lt1  15407
  Copyright terms: Public domain W3C validator