| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2252 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2252 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: indif2 3448 resdm2 5218 co01 5242 cocnvres 5252 undifdc 7082 1mhlfehlf 9325 rei 11405 resqrexlemover 11516 cos1bnd 12265 m1bits 12466 6gcd4e2 12511 3lcm2e6 12677 karatsuba 12948 cosq23lt0 15501 sincos4thpi 15508 sincos6thpi 15510 cosq34lt1 15518 |
| Copyright terms: Public domain | W3C validator |