| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2227 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2227 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: indif2 3416 resdm2 5170 co01 5194 cocnvres 5204 undifdc 7003 1mhlfehlf 9237 rei 11129 resqrexlemover 11240 cos1bnd 11989 m1bits 12190 6gcd4e2 12235 3lcm2e6 12401 karatsuba 12672 cosq23lt0 15223 sincos4thpi 15230 sincos6thpi 15232 cosq34lt1 15240 |
| Copyright terms: Public domain | W3C validator |