ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3ri GIF version

Theorem 3eqtr3ri 2234
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3ri 𝐷 = 𝐶

Proof of Theorem 3eqtr3ri
StepHypRef Expression
1 3eqtr3i.3 . 2 𝐵 = 𝐷
2 3eqtr3i.1 . . 3 𝐴 = 𝐵
3 3eqtr3i.2 . . 3 𝐴 = 𝐶
42, 3eqtr3i 2227 . 2 𝐵 = 𝐶
51, 4eqtr3i 2227 1 𝐷 = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197
This theorem is referenced by:  indif2  3416  resdm2  5172  co01  5196  cocnvres  5206  undifdc  7020  1mhlfehlf  9254  rei  11152  resqrexlemover  11263  cos1bnd  12012  m1bits  12213  6gcd4e2  12258  3lcm2e6  12424  karatsuba  12695  cosq23lt0  15247  sincos4thpi  15254  sincos6thpi  15256  cosq34lt1  15264
  Copyright terms: Public domain W3C validator