ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos1bnd GIF version

Theorem cos1bnd 11924
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos1bnd ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))

Proof of Theorem cos1bnd
StepHypRef Expression
1 sq1 10725 . . . . . . . 8 (1↑2) = 1
21oveq1i 5932 . . . . . . 7 ((1↑2) / 3) = (1 / 3)
32oveq2i 5933 . . . . . 6 (2 · ((1↑2) / 3)) = (2 · (1 / 3))
4 2cn 9061 . . . . . . 7 2 ∈ ℂ
5 3cn 9065 . . . . . . 7 3 ∈ ℂ
6 3ap0 9086 . . . . . . 7 3 # 0
74, 5, 6divrecapi 8784 . . . . . 6 (2 / 3) = (2 · (1 / 3))
83, 7eqtr4i 2220 . . . . 5 (2 · ((1↑2) / 3)) = (2 / 3)
98oveq2i 5933 . . . 4 (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3))
10 ax-1cn 7972 . . . . 5 1 ∈ ℂ
114, 5, 6divclapi 8781 . . . . 5 (2 / 3) ∈ ℂ
125, 6recclapi 8769 . . . . 5 (1 / 3) ∈ ℂ
13 df-3 9050 . . . . . . 7 3 = (2 + 1)
1413oveq1i 5932 . . . . . 6 (3 / 3) = ((2 + 1) / 3)
155, 6dividapi 8772 . . . . . 6 (3 / 3) = 1
164, 10, 5, 6divdirapi 8796 . . . . . 6 ((2 + 1) / 3) = ((2 / 3) + (1 / 3))
1714, 15, 163eqtr3ri 2226 . . . . 5 ((2 / 3) + (1 / 3)) = 1
1810, 11, 12, 17subaddrii 8315 . . . 4 (1 − (2 / 3)) = (1 / 3)
199, 18eqtri 2217 . . 3 (1 − (2 · ((1↑2) / 3))) = (1 / 3)
20 1re 8025 . . . . 5 1 ∈ ℝ
21 0lt1 8153 . . . . 5 0 < 1
22 1le1 8599 . . . . 5 1 ≤ 1
23 0xr 8073 . . . . . . 7 0 ∈ ℝ*
24 elioc2 10011 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)))
2523, 20, 24mp2an 426 . . . . . 6 (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))
26 cos01bnd 11923 . . . . . 6 (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))))
2725, 26sylbir 135 . . . . 5 ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))))
2820, 21, 22, 27mp3an 1348 . . . 4 ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))
2928simpli 111 . . 3 (1 − (2 · ((1↑2) / 3))) < (cos‘1)
3019, 29eqbrtrri 4056 . 2 (1 / 3) < (cos‘1)
3128simpri 113 . . 3 (cos‘1) < (1 − ((1↑2) / 3))
322oveq2i 5933 . . . 4 (1 − ((1↑2) / 3)) = (1 − (1 / 3))
3310, 12, 11subadd2i 8314 . . . . 5 ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1)
3417, 33mpbir 146 . . . 4 (1 − (1 / 3)) = (2 / 3)
3532, 34eqtri 2217 . . 3 (1 − ((1↑2) / 3)) = (2 / 3)
3631, 35breqtri 4058 . 2 (cos‘1) < (2 / 3)
3730, 36pm3.2i 272 1 ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  *cxr 8060   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  2c2 9041  3c3 9042  (,]cioc 9964  cexp 10630  cosccos 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioc 9968  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-cos 11816
This theorem is referenced by:  cos2bnd  11925
  Copyright terms: Public domain W3C validator