Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cos1bnd | GIF version |
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 10583 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
2 | 1 | oveq1i 5875 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
3 | 2 | oveq2i 5876 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
4 | 2cn 8963 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 3cn 8967 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
6 | 3ap0 8988 | . . . . . . 7 ⊢ 3 # 0 | |
7 | 4, 5, 6 | divrecapi 8687 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
8 | 3, 7 | eqtr4i 2199 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
9 | 8 | oveq2i 5876 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
10 | ax-1cn 7879 | . . . . 5 ⊢ 1 ∈ ℂ | |
11 | 4, 5, 6 | divclapi 8684 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
12 | 5, 6 | recclapi 8672 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
13 | df-3 8952 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
14 | 13 | oveq1i 5875 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
15 | 5, 6 | dividapi 8675 | . . . . . 6 ⊢ (3 / 3) = 1 |
16 | 4, 10, 5, 6 | divdirapi 8699 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
17 | 14, 15, 16 | 3eqtr3ri 2205 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
18 | 10, 11, 12, 17 | subaddrii 8220 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
19 | 9, 18 | eqtri 2196 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
20 | 1re 7931 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | 0lt1 8058 | . . . . 5 ⊢ 0 < 1 | |
22 | 1le1 8503 | . . . . 5 ⊢ 1 ≤ 1 | |
23 | 0xr 7978 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
24 | elioc2 9907 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
25 | 23, 20, 24 | mp2an 426 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
26 | cos01bnd 11734 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
27 | 25, 26 | sylbir 135 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
28 | 20, 21, 22, 27 | mp3an 1337 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
29 | 28 | simpli 111 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
30 | 19, 29 | eqbrtrri 4021 | . 2 ⊢ (1 / 3) < (cos‘1) |
31 | 28 | simpri 113 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
32 | 2 | oveq2i 5876 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
33 | 10, 12, 11 | subadd2i 8219 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
34 | 17, 33 | mpbir 146 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
35 | 32, 34 | eqtri 2196 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
36 | 31, 35 | breqtri 4023 | . 2 ⊢ (cos‘1) < (2 / 3) |
37 | 30, 36 | pm3.2i 272 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℝcr 7785 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 ℝ*cxr 7965 < clt 7966 ≤ cle 7967 − cmin 8102 / cdiv 8602 2c2 8943 3c3 8944 (,]cioc 9860 ↑cexp 10489 cosccos 11621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-oadd 6411 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-ioc 9864 df-ico 9865 df-fz 9980 df-fzo 10113 df-seqfrec 10416 df-exp 10490 df-fac 10674 df-ihash 10724 df-shft 10792 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-clim 11255 df-sumdc 11330 df-ef 11624 df-cos 11627 |
This theorem is referenced by: cos2bnd 11736 |
Copyright terms: Public domain | W3C validator |