| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos1bnd | GIF version | ||
| Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 10727 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
| 2 | 1 | oveq1i 5933 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
| 3 | 2 | oveq2i 5934 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
| 4 | 2cn 9063 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 5 | 3cn 9067 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 6 | 3ap0 9088 | . . . . . . 7 ⊢ 3 # 0 | |
| 7 | 4, 5, 6 | divrecapi 8786 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
| 8 | 3, 7 | eqtr4i 2220 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
| 9 | 8 | oveq2i 5934 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
| 10 | ax-1cn 7974 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 4, 5, 6 | divclapi 8783 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 12 | 5, 6 | recclapi 8771 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 13 | df-3 9052 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 14 | 13 | oveq1i 5933 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
| 15 | 5, 6 | dividapi 8774 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 16 | 4, 10, 5, 6 | divdirapi 8798 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 17 | 14, 15, 16 | 3eqtr3ri 2226 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
| 18 | 10, 11, 12, 17 | subaddrii 8317 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
| 19 | 9, 18 | eqtri 2217 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
| 20 | 1re 8027 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | 0lt1 8155 | . . . . 5 ⊢ 0 < 1 | |
| 22 | 1le1 8601 | . . . . 5 ⊢ 1 ≤ 1 | |
| 23 | 0xr 8075 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 24 | elioc2 10013 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
| 25 | 23, 20, 24 | mp2an 426 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
| 26 | cos01bnd 11925 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
| 27 | 25, 26 | sylbir 135 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
| 28 | 20, 21, 22, 27 | mp3an 1348 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
| 29 | 28 | simpli 111 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
| 30 | 19, 29 | eqbrtrri 4057 | . 2 ⊢ (1 / 3) < (cos‘1) |
| 31 | 28 | simpri 113 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
| 32 | 2 | oveq2i 5934 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
| 33 | 10, 12, 11 | subadd2i 8316 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
| 34 | 17, 33 | mpbir 146 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 35 | 32, 34 | eqtri 2217 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
| 36 | 31, 35 | breqtri 4059 | . 2 ⊢ (cos‘1) < (2 / 3) |
| 37 | 30, 36 | pm3.2i 272 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 ℝcr 7880 0cc0 7881 1c1 7882 + caddc 7884 · cmul 7886 ℝ*cxr 8062 < clt 8063 ≤ cle 8064 − cmin 8199 / cdiv 8701 2c2 9043 3c3 9044 (,]cioc 9966 ↑cexp 10632 cosccos 11812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-frec 6450 df-1o 6475 df-oadd 6479 df-er 6593 df-en 6801 df-dom 6802 df-fin 6803 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-n0 9252 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-ioc 9970 df-ico 9971 df-fz 10086 df-fzo 10220 df-seqfrec 10542 df-exp 10633 df-fac 10820 df-ihash 10870 df-shft 10982 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-clim 11446 df-sumdc 11521 df-ef 11815 df-cos 11818 |
| This theorem is referenced by: cos2bnd 11927 |
| Copyright terms: Public domain | W3C validator |