| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos1bnd | GIF version | ||
| Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 10822 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
| 2 | 1 | oveq1i 5984 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
| 3 | 2 | oveq2i 5985 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
| 4 | 2cn 9149 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 5 | 3cn 9153 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 6 | 3ap0 9174 | . . . . . . 7 ⊢ 3 # 0 | |
| 7 | 4, 5, 6 | divrecapi 8872 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
| 8 | 3, 7 | eqtr4i 2233 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
| 9 | 8 | oveq2i 5985 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
| 10 | ax-1cn 8060 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 4, 5, 6 | divclapi 8869 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 12 | 5, 6 | recclapi 8857 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 13 | df-3 9138 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 14 | 13 | oveq1i 5984 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
| 15 | 5, 6 | dividapi 8860 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 16 | 4, 10, 5, 6 | divdirapi 8884 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 17 | 14, 15, 16 | 3eqtr3ri 2239 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
| 18 | 10, 11, 12, 17 | subaddrii 8403 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
| 19 | 9, 18 | eqtri 2230 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
| 20 | 1re 8113 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | 0lt1 8241 | . . . . 5 ⊢ 0 < 1 | |
| 22 | 1le1 8687 | . . . . 5 ⊢ 1 ≤ 1 | |
| 23 | 0xr 8161 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 24 | elioc2 10100 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
| 25 | 23, 20, 24 | mp2an 426 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
| 26 | cos01bnd 12235 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
| 27 | 25, 26 | sylbir 135 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
| 28 | 20, 21, 22, 27 | mp3an 1352 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
| 29 | 28 | simpli 111 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
| 30 | 19, 29 | eqbrtrri 4085 | . 2 ⊢ (1 / 3) < (cos‘1) |
| 31 | 28 | simpri 113 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
| 32 | 2 | oveq2i 5985 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
| 33 | 10, 12, 11 | subadd2i 8402 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
| 34 | 17, 33 | mpbir 146 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 35 | 32, 34 | eqtri 2230 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
| 36 | 31, 35 | breqtri 4087 | . 2 ⊢ (cos‘1) < (2 / 3) |
| 37 | 30, 36 | pm3.2i 272 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 ℝ*cxr 8148 < clt 8149 ≤ cle 8150 − cmin 8285 / cdiv 8787 2c2 9129 3c3 9130 (,]cioc 10053 ↑cexp 10727 cosccos 12122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-ioc 10057 df-ico 10058 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-cos 12128 |
| This theorem is referenced by: cos2bnd 12237 |
| Copyright terms: Public domain | W3C validator |