![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > co01 | GIF version |
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 5050 | . . . 4 ⊢ ◡∅ = ∅ | |
2 | cnvco 4830 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
3 | 1 | coeq2i 4805 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
4 | co02 5160 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
5 | 2, 3, 4 | 3eqtri 2214 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
6 | 1, 5 | eqtr4i 2213 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
7 | 6 | cnveqi 4820 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
8 | rel0 4769 | . . 3 ⊢ Rel ∅ | |
9 | dfrel2 5097 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
10 | 8, 9 | mpbi 145 | . 2 ⊢ ◡◡∅ = ∅ |
11 | relco 5145 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
12 | dfrel2 5097 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
13 | 11, 12 | mpbi 145 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
14 | 7, 10, 13 | 3eqtr3ri 2219 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∅c0 3437 ◡ccnv 4643 ∘ ccom 4648 Rel wrel 4649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |