ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 5194
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5083 . . . 4 ∅ = ∅
2 cnvco 4861 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4836 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 5193 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2229 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2228 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4851 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4798 . . 3 Rel ∅
9 dfrel2 5130 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 145 . 2 ∅ = ∅
11 relco 5178 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 5130 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 145 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2234 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1372  c0 3459  ccnv 4672  ccom 4677  Rel wrel 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator