ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 5206
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5095 . . . 4 ∅ = ∅
2 cnvco 4871 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4846 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 5205 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2231 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2230 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4861 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4808 . . 3 Rel ∅
9 dfrel2 5142 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 145 . 2 ∅ = ∅
11 relco 5190 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 5142 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 145 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2236 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  c0 3464  ccnv 4682  ccom 4687  Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator