ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 5161
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5050 . . . 4 ∅ = ∅
2 cnvco 4830 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4805 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 5160 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2214 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2213 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4820 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4769 . . 3 Rel ∅
9 dfrel2 5097 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 145 . 2 ∅ = ∅
11 relco 5145 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 5097 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 145 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2219 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3437  ccnv 4643  ccom 4648  Rel wrel 4649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator