ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 5118
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5007 . . . 4 ∅ = ∅
2 cnvco 4789 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4764 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 5117 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2190 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2189 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4779 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4729 . . 3 Rel ∅
9 dfrel2 5054 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 144 . 2 ∅ = ∅
11 relco 5102 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 5054 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 144 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2195 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1343  c0 3409  ccnv 4603  ccom 4608  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator