ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 5242
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5131 . . . 4 ∅ = ∅
2 cnvco 4906 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4881 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 5241 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2254 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2253 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4896 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4843 . . 3 Rel ∅
9 dfrel2 5178 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 145 . 2 ∅ = ∅
11 relco 5226 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 5178 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 145 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2259 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1395  c0 3491  ccnv 4717  ccom 4722  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator