| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocnvres | GIF version | ||
| Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| cocnvres | ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 4997 | . . . 4 ⊢ (𝑆 ↾ dom 𝑅) ⊆ 𝑆 | |
| 2 | dmss 4891 | . . . 4 ⊢ ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 |
| 4 | cores2 5209 | . . 3 ⊢ (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) |
| 6 | rescnvcnv 5159 | . . . 4 ⊢ (◡◡𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆) | |
| 7 | 6 | cnveqi 4866 | . . 3 ⊢ ◡(◡◡𝑅 ↾ dom 𝑆) = ◡(𝑅 ↾ dom 𝑆) |
| 8 | 7 | coeq2i 4851 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| 9 | dfdm4 4884 | . . . 4 ⊢ dom 𝑅 = ran ◡𝑅 | |
| 10 | 9 | eqimss2i 3254 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
| 11 | cores 5200 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅)) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅) |
| 13 | 5, 8, 12 | 3eqtr3ri 2236 | 1 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3170 ◡ccnv 4687 dom cdm 4688 ran crn 4689 ↾ cres 4690 ∘ ccom 4692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 |
| This theorem is referenced by: cocnvss 5222 |
| Copyright terms: Public domain | W3C validator |