| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocnvres | GIF version | ||
| Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| cocnvres | ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5028 | . . . 4 ⊢ (𝑆 ↾ dom 𝑅) ⊆ 𝑆 | |
| 2 | dmss 4921 | . . . 4 ⊢ ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 |
| 4 | cores2 5240 | . . 3 ⊢ (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) |
| 6 | rescnvcnv 5190 | . . . 4 ⊢ (◡◡𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆) | |
| 7 | 6 | cnveqi 4896 | . . 3 ⊢ ◡(◡◡𝑅 ↾ dom 𝑆) = ◡(𝑅 ↾ dom 𝑆) |
| 8 | 7 | coeq2i 4881 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| 9 | dfdm4 4914 | . . . 4 ⊢ dom 𝑅 = ran ◡𝑅 | |
| 10 | 9 | eqimss2i 3281 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
| 11 | cores 5231 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅)) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅) |
| 13 | 5, 8, 12 | 3eqtr3ri 2259 | 1 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 ◡ccnv 4717 dom cdm 4718 ran crn 4719 ↾ cres 4720 ∘ ccom 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 |
| This theorem is referenced by: cocnvss 5253 |
| Copyright terms: Public domain | W3C validator |