ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres GIF version

Theorem cocnvres 5207
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4983 . . . 4 (𝑆 ↾ dom 𝑅) ⊆ 𝑆
2 dmss 4877 . . . 4 ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆)
31, 2ax-mp 5 . . 3 dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆
4 cores2 5195 . . 3 (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅))
53, 4ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅)
6 rescnvcnv 5145 . . . 4 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
76cnveqi 4853 . . 3 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
87coeq2i 4838 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
9 dfdm4 4870 . . . 4 dom 𝑅 = ran 𝑅
109eqimss2i 3250 . . 3 ran 𝑅 ⊆ dom 𝑅
11 cores 5186 . . 3 (ran 𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅))
1210, 11ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅)
135, 8, 123eqtr3ri 2235 1 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wss 3166  ccnv 4674  dom cdm 4675  ran crn 4676  cres 4677  ccom 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687
This theorem is referenced by:  cocnvss  5208
  Copyright terms: Public domain W3C validator