ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres GIF version

Theorem cocnvres 5221
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4997 . . . 4 (𝑆 ↾ dom 𝑅) ⊆ 𝑆
2 dmss 4891 . . . 4 ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆)
31, 2ax-mp 5 . . 3 dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆
4 cores2 5209 . . 3 (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅))
53, 4ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅)
6 rescnvcnv 5159 . . . 4 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
76cnveqi 4866 . . 3 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
87coeq2i 4851 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
9 dfdm4 4884 . . . 4 dom 𝑅 = ran 𝑅
109eqimss2i 3254 . . 3 ran 𝑅 ⊆ dom 𝑅
11 cores 5200 . . 3 (ran 𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅))
1210, 11ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅)
135, 8, 123eqtr3ri 2236 1 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wss 3170  ccnv 4687  dom cdm 4688  ran crn 4689  cres 4690  ccom 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700
This theorem is referenced by:  cocnvss  5222
  Copyright terms: Public domain W3C validator