![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cocnvres | GIF version |
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvres | ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4933 | . . . 4 ⊢ (𝑆 ↾ dom 𝑅) ⊆ 𝑆 | |
2 | dmss 4828 | . . . 4 ⊢ ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 |
4 | cores2 5143 | . . 3 ⊢ (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) |
6 | rescnvcnv 5093 | . . . 4 ⊢ (◡◡𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆) | |
7 | 6 | cnveqi 4804 | . . 3 ⊢ ◡(◡◡𝑅 ↾ dom 𝑆) = ◡(𝑅 ↾ dom 𝑆) |
8 | 7 | coeq2i 4789 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
9 | dfdm4 4821 | . . . 4 ⊢ dom 𝑅 = ran ◡𝑅 | |
10 | 9 | eqimss2i 3214 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
11 | cores 5134 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅)) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅) |
13 | 5, 8, 12 | 3eqtr3ri 2207 | 1 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ⊆ wss 3131 ◡ccnv 4627 dom cdm 4628 ran crn 4629 ↾ cres 4630 ∘ ccom 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 |
This theorem is referenced by: cocnvss 5156 |
Copyright terms: Public domain | W3C validator |