ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres GIF version

Theorem cocnvres 5128
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4908 . . . 4 (𝑆 ↾ dom 𝑅) ⊆ 𝑆
2 dmss 4803 . . . 4 ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆)
31, 2ax-mp 5 . . 3 dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆
4 cores2 5116 . . 3 (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅))
53, 4ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅)
6 rescnvcnv 5066 . . . 4 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
76cnveqi 4779 . . 3 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
87coeq2i 4764 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
9 dfdm4 4796 . . . 4 dom 𝑅 = ran 𝑅
109eqimss2i 3199 . . 3 ran 𝑅 ⊆ dom 𝑅
11 cores 5107 . . 3 (ran 𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅))
1210, 11ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅)
135, 8, 123eqtr3ri 2195 1 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wss 3116  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by:  cocnvss  5129
  Copyright terms: Public domain W3C validator