ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres GIF version

Theorem cocnvres 5155
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4933 . . . 4 (𝑆 ↾ dom 𝑅) ⊆ 𝑆
2 dmss 4828 . . . 4 ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆)
31, 2ax-mp 5 . . 3 dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆
4 cores2 5143 . . 3 (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅))
53, 4ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ 𝑅)
6 rescnvcnv 5093 . . . 4 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
76cnveqi 4804 . . 3 (𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆)
87coeq2i 4789 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
9 dfdm4 4821 . . . 4 dom 𝑅 = ran 𝑅
109eqimss2i 3214 . . 3 ran 𝑅 ⊆ dom 𝑅
11 cores 5134 . . 3 (ran 𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅))
1210, 11ax-mp 5 . 2 ((𝑆 ↾ dom 𝑅) ∘ 𝑅) = (𝑆𝑅)
135, 8, 123eqtr3ri 2207 1 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wss 3131  ccnv 4627  dom cdm 4628  ran crn 4629  cres 4630  ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640
This theorem is referenced by:  cocnvss  5156
  Copyright terms: Public domain W3C validator