![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cocnvres | GIF version |
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvres | ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4967 | . . . 4 ⊢ (𝑆 ↾ dom 𝑅) ⊆ 𝑆 | |
2 | dmss 4862 | . . . 4 ⊢ ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 |
4 | cores2 5179 | . . 3 ⊢ (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) |
6 | rescnvcnv 5129 | . . . 4 ⊢ (◡◡𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆) | |
7 | 6 | cnveqi 4838 | . . 3 ⊢ ◡(◡◡𝑅 ↾ dom 𝑆) = ◡(𝑅 ↾ dom 𝑆) |
8 | 7 | coeq2i 4823 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
9 | dfdm4 4855 | . . . 4 ⊢ dom 𝑅 = ran ◡𝑅 | |
10 | 9 | eqimss2i 3237 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
11 | cores 5170 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅)) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅) |
13 | 5, 8, 12 | 3eqtr3ri 2223 | 1 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊆ wss 3154 ◡ccnv 4659 dom cdm 4660 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 |
This theorem is referenced by: cocnvss 5192 |
Copyright terms: Public domain | W3C validator |