Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocnvres | GIF version |
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvres | ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4908 | . . . 4 ⊢ (𝑆 ↾ dom 𝑅) ⊆ 𝑆 | |
2 | dmss 4803 | . . . 4 ⊢ ((𝑆 ↾ dom 𝑅) ⊆ 𝑆 → dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 |
4 | cores2 5116 | . . 3 ⊢ (dom (𝑆 ↾ dom 𝑅) ⊆ dom 𝑆 → ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) |
6 | rescnvcnv 5066 | . . . 4 ⊢ (◡◡𝑅 ↾ dom 𝑆) = (𝑅 ↾ dom 𝑆) | |
7 | 6 | cnveqi 4779 | . . 3 ⊢ ◡(◡◡𝑅 ↾ dom 𝑆) = ◡(𝑅 ↾ dom 𝑆) |
8 | 7 | coeq2i 4764 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(◡◡𝑅 ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
9 | dfdm4 4796 | . . . 4 ⊢ dom 𝑅 = ran ◡𝑅 | |
10 | 9 | eqimss2i 3199 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
11 | cores 5107 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅)) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡𝑅) = (𝑆 ∘ ◡𝑅) |
13 | 5, 8, 12 | 3eqtr3ri 2195 | 1 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊆ wss 3116 ◡ccnv 4603 dom cdm 4604 ran crn 4605 ↾ cres 4606 ∘ ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 |
This theorem is referenced by: cocnvss 5129 |
Copyright terms: Public domain | W3C validator |