| Step | Hyp | Ref
 | Expression | 
| 1 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑤 = 1 → (𝐹‘𝑤) = (𝐹‘1)) | 
| 2 | 1 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 1 → ((𝐹‘𝑤)↑2) = ((𝐹‘1)↑2)) | 
| 3 | 2 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = 1 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘1)↑2))) | 
| 4 | 3 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 1 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘1)↑2)))) | 
| 5 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) | 
| 6 | 5 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑘)↑2)) | 
| 7 | 6 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = 𝑘 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑘)↑2))) | 
| 8 | 7 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)))) | 
| 9 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) | 
| 10 | 9 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2)) | 
| 11 | 10 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) | 
| 12 | 11 | imbi2d 230 | 
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) | 
| 13 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝐹‘𝑤) = (𝐹‘𝑁)) | 
| 14 | 13 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑁)↑2)) | 
| 15 | 14 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = 𝑁 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑁)↑2))) | 
| 16 | 15 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2)))) | 
| 17 |   | resqrexlemex.a | 
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 18 | 17 | resqcld 10791 | 
. . . . . 6
⊢ (𝜑 → (𝐴↑2) ∈ ℝ) | 
| 19 |   | 2re 9060 | 
. . . . . . . 8
⊢ 2 ∈
ℝ | 
| 20 | 19 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) | 
| 21 | 20, 17 | remulcld 8057 | 
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ∈
ℝ) | 
| 22 | 18, 21 | readdcld 8056 | 
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) ∈ ℝ) | 
| 23 |   | 1red 8041 | 
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) | 
| 24 | 22, 23 | readdcld 8056 | 
. . . . 5
⊢ (𝜑 → (((𝐴↑2) + (2 · 𝐴)) + 1) ∈ ℝ) | 
| 25 | 17 | recnd 8055 | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 26 | 25 | mulid2d 8045 | 
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) = 𝐴) | 
| 27 |   | resqrexlemex.agt0 | 
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) | 
| 28 |   | 1le2 9199 | 
. . . . . . . . 9
⊢ 1 ≤
2 | 
| 29 |   | lemul1a 8885 | 
. . . . . . . . 9
⊢ (((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 1 ≤ 2) → (1
· 𝐴) ≤ (2
· 𝐴)) | 
| 30 | 28, 29 | mpan2 425 | 
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (1 · 𝐴) ≤ (2 · 𝐴)) | 
| 31 | 23, 20, 17, 27, 30 | syl112anc 1253 | 
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) ≤ (2 · 𝐴)) | 
| 32 | 26, 31 | eqbrtrrd 4057 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ (2 · 𝐴)) | 
| 33 | 17 | sqge0d 10792 | 
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝐴↑2)) | 
| 34 | 21, 18 | addge02d 8561 | 
. . . . . . 7
⊢ (𝜑 → (0 ≤ (𝐴↑2) ↔ (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴)))) | 
| 35 | 33, 34 | mpbid 147 | 
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴))) | 
| 36 | 17, 21, 22, 32, 35 | letrd 8150 | 
. . . . 5
⊢ (𝜑 → 𝐴 ≤ ((𝐴↑2) + (2 · 𝐴))) | 
| 37 | 22 | ltp1d 8957 | 
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) < (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
| 38 | 17, 22, 24, 36, 37 | lelttrd 8151 | 
. . . 4
⊢ (𝜑 → 𝐴 < (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
| 39 |   | resqrexlemex.seq | 
. . . . . . . 8
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | 
| 40 | 39, 17, 27 | resqrexlemf1 11173 | 
. . . . . . 7
⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | 
| 41 |   | 1cnd 8042 | 
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) | 
| 42 | 41, 25 | addcomd 8177 | 
. . . . . . 7
⊢ (𝜑 → (1 + 𝐴) = (𝐴 + 1)) | 
| 43 | 40, 42 | eqtrd 2229 | 
. . . . . 6
⊢ (𝜑 → (𝐹‘1) = (𝐴 + 1)) | 
| 44 | 43 | oveq1d 5937 | 
. . . . 5
⊢ (𝜑 → ((𝐹‘1)↑2) = ((𝐴 + 1)↑2)) | 
| 45 |   | binom21 10744 | 
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
| 46 | 25, 45 | syl 14 | 
. . . . 5
⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
| 47 | 44, 46 | eqtrd 2229 | 
. . . 4
⊢ (𝜑 → ((𝐹‘1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
| 48 | 38, 47 | breqtrrd 4061 | 
. . 3
⊢ (𝜑 → 𝐴 < ((𝐹‘1)↑2)) | 
| 49 | 39, 17, 27 | resqrexlemf 11172 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | 
| 50 | 49 | ffvelcdmda 5697 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈
ℝ+) | 
| 51 | 50 | rpred 9771 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) | 
| 52 | 17 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) | 
| 53 | 52, 50 | rerpdivcld 9803 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℝ) | 
| 54 | 51, 53 | resubcld 8407 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) | 
| 55 | 54 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) | 
| 56 | 55 | resqcld 10791 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℝ) | 
| 57 |   | 4re 9067 | 
. . . . . . . . . 10
⊢ 4 ∈
ℝ | 
| 58 | 57 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 ∈
ℝ) | 
| 59 | 51 | resqcld 10791 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℝ) | 
| 60 | 59, 52 | resubcld 8407 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) | 
| 61 | 60 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) | 
| 62 | 51 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℝ) | 
| 63 | 52, 59 | posdifd 8559 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) ↔ 0 < (((𝐹‘𝑘)↑2) − 𝐴))) | 
| 64 | 63 | biimpa 296 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘)↑2) − 𝐴)) | 
| 65 | 50 | rpgt0d 9774 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < (𝐹‘𝑘)) | 
| 66 | 65 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (𝐹‘𝑘)) | 
| 67 | 61, 62, 64, 66 | divgt0d 8962 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘))) | 
| 68 | 51 | recnd 8055 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) | 
| 69 | 68 | sqcld 10763 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℂ) | 
| 70 | 69 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) ∈ ℂ) | 
| 71 | 25 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) | 
| 72 | 71 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℂ) | 
| 73 | 68 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℂ) | 
| 74 | 50 | rpap0d 9777 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) # 0) | 
| 75 | 74 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) # 0) | 
| 76 | 70, 72, 73, 75 | divsubdirapd 8857 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘)))) | 
| 77 | 73 | sqvald 10762 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) = ((𝐹‘𝑘) · (𝐹‘𝑘))) | 
| 78 | 77 | oveq1d 5937 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘))) | 
| 79 | 73, 73, 75 | divcanap3d 8822 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘)) = (𝐹‘𝑘)) | 
| 80 | 78, 79 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (𝐹‘𝑘)) | 
| 81 | 80 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘))) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) | 
| 82 | 76, 81 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) | 
| 83 | 67, 82 | breqtrd 4059 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) | 
| 84 | 55, 83 | gt0ap0d 8656 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) # 0) | 
| 85 | 55, 84 | sqgt0apd 10793 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2)) | 
| 86 |   | 4pos 9087 | 
. . . . . . . . . 10
⊢ 0 <
4 | 
| 87 | 86 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < 4) | 
| 88 | 56, 58, 85, 87 | divgt0d 8962 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4)) | 
| 89 | 57, 86 | gt0ap0ii 8655 | 
. . . . . . . . . . 11
⊢ 4 #
0 | 
| 90 | 89 | a1i 9 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 # 0) | 
| 91 | 56, 58, 90 | redivclapd 8862 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ∈
ℝ) | 
| 92 | 52 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℝ) | 
| 93 | 91, 92 | ltaddpos2d 8557 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) | 
| 94 | 88, 93 | mpbid 147 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) | 
| 95 | 39, 17, 27 | resqrexlemfp1 11174 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) | 
| 96 | 95 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2)) | 
| 97 | 51, 53 | readdcld 8056 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℝ) | 
| 98 | 97 | recnd 8055 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℂ) | 
| 99 |   | 2cnd 9063 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) | 
| 100 |   | 2ap0 9083 | 
. . . . . . . . . . . . . . 15
⊢ 2 #
0 | 
| 101 | 100 | a1i 9 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 #
0) | 
| 102 | 98, 99, 101 | sqdivapd 10778 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) | 
| 103 | 96, 102 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) | 
| 104 |   | sq2 10727 | 
. . . . . . . . . . . . 13
⊢
(2↑2) = 4 | 
| 105 | 104 | oveq2i 5933 | 
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2)) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) | 
| 106 | 103, 105 | eqtrdi 2245 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4)) | 
| 107 | 71, 68, 74 | divcanap2d 8819 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))) = 𝐴) | 
| 108 | 107 | oveq2d 5938 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘)))) = (2 · 𝐴)) | 
| 109 | 108 | oveq2d 5938 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) | 
| 110 | 109 | oveq1d 5937 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 111 | 110 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) | 
| 112 | 53 | recnd 8055 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℂ) | 
| 113 |   | binom2sub 10745 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 114 | 68, 112, 113 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 115 | 114 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) | 
| 116 |   | binom2 10743 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 117 | 68, 112, 116 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 118 | 108 | oveq2d 5938 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) | 
| 119 | 118 | oveq1d 5937 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 120 | 117, 119 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 121 | 99, 71 | mulcld 8047 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℂ) | 
| 122 | 121 | negcld 8324 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -(2 · 𝐴) ∈
ℂ) | 
| 123 |   | 4cn 9068 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℂ | 
| 124 | 123 | a1i 9 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℂ) | 
| 125 | 124, 71 | mulcld 8047 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℂ) | 
| 126 | 69, 122, 125 | addassd 8049 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴)))) | 
| 127 | 69, 121 | negsubd 8343 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + -(2 · 𝐴)) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) | 
| 128 | 127 | oveq1d 5937 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) | 
| 129 |   | 2cn 9061 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℂ | 
| 130 | 129 | negcli 8294 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ -2 ∈
ℂ | 
| 131 | 130 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -2 ∈
ℂ) | 
| 132 | 131, 124,
71 | adddird 8052 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = ((-2 · 𝐴) + (4 · 𝐴))) | 
| 133 | 99, 71 | mulneg1d 8437 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴)) | 
| 134 | 133 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 · 𝐴) + (4 · 𝐴)) = (-(2 · 𝐴) + (4 · 𝐴))) | 
| 135 | 132, 134 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = (-(2 · 𝐴) + (4 · 𝐴))) | 
| 136 | 130, 129,
129 | addassi 8034 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = (-2 + (2 + 2)) | 
| 137 | 129 | subidi 8297 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2
− 2) = 0 | 
| 138 | 137 | negeqi 8220 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = -0 | 
| 139 | 129, 129 | negsubdii 8311 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = (-2 + 2) | 
| 140 |   | neg0 8272 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 | 
| 141 | 138, 139,
140 | 3eqtr3i 2225 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (-2 + 2)
= 0 | 
| 142 | 141 | oveq1i 5932 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-2 + 2)
+ 2) = (0 + 2) | 
| 143 | 129 | addlidi 8169 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 + 2) =
2 | 
| 144 | 142, 143 | eqtri 2217 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = 2 | 
| 145 |   | 2p2e4 9117 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 + 2) =
4 | 
| 146 | 145 | oveq2i 5933 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (-2 + (2
+ 2)) = (-2 + 4) | 
| 147 | 136, 144,
146 | 3eqtr3ri 2226 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (-2 + 4)
= 2 | 
| 148 | 147 | oveq1i 5932 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((-2 + 4)
· 𝐴) = (2 ·
𝐴) | 
| 149 | 135, 148 | eqtr3di 2244 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(2 · 𝐴) + (4 · 𝐴)) = (2 · 𝐴)) | 
| 150 | 149 | oveq2d 5938 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) | 
| 151 | 126, 128,
150 | 3eqtr3rd 2238 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) | 
| 152 | 151 | oveq1d 5937 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) | 
| 153 | 19 | a1i 9 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℝ) | 
| 154 | 153, 52 | remulcld 8057 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℝ) | 
| 155 | 59, 154 | resubcld 8407 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · 𝐴)) ∈
ℝ) | 
| 156 | 57 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℝ) | 
| 157 | 156, 52 | remulcld 8057 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℝ) | 
| 158 | 53 | resqcld 10791 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 / (𝐹‘𝑘))↑2) ∈ ℝ) | 
| 159 |   | recn 8012 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ ℝ → 𝑓 ∈
ℂ) | 
| 160 |   | recn 8012 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ ℝ → 𝑔 ∈
ℂ) | 
| 161 |   | addcom 8163 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) | 
| 162 | 159, 160,
161 | syl2an 289 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) | 
| 163 | 162 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) | 
| 164 |   | recn 8012 | 
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ ℝ → ℎ ∈ ℂ) | 
| 165 |   | addass 8009 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ ℎ ∈ ℂ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) | 
| 166 | 159, 160,
164, 165 | syl3an 1291 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) | 
| 167 | 166 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ)) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) | 
| 168 | 155, 157,
158, 163, 167 | caov32d 6104 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) | 
| 169 | 120, 152,
168 | 3eqtrd 2233 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) | 
| 170 | 111, 115,
169 | 3eqtr4rd 2240 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴))) | 
| 171 | 170 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) | 
| 172 | 106, 171 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) | 
| 173 | 68, 112 | subcld 8337 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℂ) | 
| 174 | 173 | sqcld 10763 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℂ) | 
| 175 | 89 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 #
0) | 
| 176 | 174, 125,
124, 175 | divdirapd 8856 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4))) | 
| 177 | 71, 124, 175 | divcanap3d 8822 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴) | 
| 178 | 177 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4)) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) | 
| 179 | 172, 176,
178 | 3eqtrd 2233 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) | 
| 180 | 179 | breq2d 4045 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) | 
| 181 | 180 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) | 
| 182 | 94, 181 | mpbird 167 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)) | 
| 183 | 182 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) | 
| 184 | 183 | expcom 116 | 
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) | 
| 185 | 184 | a2d 26 | 
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)) → (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) | 
| 186 | 4, 8, 12, 16, 48, 185 | nnind 9006 | 
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2))) | 
| 187 | 186 | impcom 125 | 
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |