Step | Hyp | Ref
| Expression |
1 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = 1 → (𝐹‘𝑤) = (𝐹‘1)) |
2 | 1 | oveq1d 5868 |
. . . . 5
⊢ (𝑤 = 1 → ((𝐹‘𝑤)↑2) = ((𝐹‘1)↑2)) |
3 | 2 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 1 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘1)↑2))) |
4 | 3 | imbi2d 229 |
. . 3
⊢ (𝑤 = 1 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘1)↑2)))) |
5 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
6 | 5 | oveq1d 5868 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑘)↑2)) |
7 | 6 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 𝑘 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑘)↑2))) |
8 | 7 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)))) |
9 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) |
10 | 9 | oveq1d 5868 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2)) |
11 | 10 | breq2d 4001 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
13 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝐹‘𝑤) = (𝐹‘𝑁)) |
14 | 13 | oveq1d 5868 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝐹‘𝑤)↑2) = ((𝐹‘𝑁)↑2)) |
15 | 14 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 𝑁 → (𝐴 < ((𝐹‘𝑤)↑2) ↔ 𝐴 < ((𝐹‘𝑁)↑2))) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → 𝐴 < ((𝐹‘𝑤)↑2)) ↔ (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2)))) |
17 | | resqrexlemex.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
18 | 17 | resqcld 10635 |
. . . . . 6
⊢ (𝜑 → (𝐴↑2) ∈ ℝ) |
19 | | 2re 8948 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
20 | 19 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
21 | 20, 17 | remulcld 7950 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ∈
ℝ) |
22 | 18, 21 | readdcld 7949 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) ∈ ℝ) |
23 | | 1red 7935 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
24 | 22, 23 | readdcld 7949 |
. . . . 5
⊢ (𝜑 → (((𝐴↑2) + (2 · 𝐴)) + 1) ∈ ℝ) |
25 | 17 | recnd 7948 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
26 | 25 | mulid2d 7938 |
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
27 | | resqrexlemex.agt0 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) |
28 | | 1le2 9086 |
. . . . . . . . 9
⊢ 1 ≤
2 |
29 | | lemul1a 8774 |
. . . . . . . . 9
⊢ (((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 1 ≤ 2) → (1
· 𝐴) ≤ (2
· 𝐴)) |
30 | 28, 29 | mpan2 423 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (1 · 𝐴) ≤ (2 · 𝐴)) |
31 | 23, 20, 17, 27, 30 | syl112anc 1237 |
. . . . . . 7
⊢ (𝜑 → (1 · 𝐴) ≤ (2 · 𝐴)) |
32 | 26, 31 | eqbrtrrd 4013 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ (2 · 𝐴)) |
33 | 17 | sqge0d 10636 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
34 | 21, 18 | addge02d 8453 |
. . . . . . 7
⊢ (𝜑 → (0 ≤ (𝐴↑2) ↔ (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴)))) |
35 | 33, 34 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) ≤ ((𝐴↑2) + (2 · 𝐴))) |
36 | 17, 21, 22, 32, 35 | letrd 8043 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ ((𝐴↑2) + (2 · 𝐴))) |
37 | 22 | ltp1d 8846 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) + (2 · 𝐴)) < (((𝐴↑2) + (2 · 𝐴)) + 1)) |
38 | 17, 22, 24, 36, 37 | lelttrd 8044 |
. . . 4
⊢ (𝜑 → 𝐴 < (((𝐴↑2) + (2 · 𝐴)) + 1)) |
39 | | resqrexlemex.seq |
. . . . . . . 8
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
40 | 39, 17, 27 | resqrexlemf1 10972 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) |
41 | | 1cnd 7936 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
42 | 41, 25 | addcomd 8070 |
. . . . . . 7
⊢ (𝜑 → (1 + 𝐴) = (𝐴 + 1)) |
43 | 40, 42 | eqtrd 2203 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) = (𝐴 + 1)) |
44 | 43 | oveq1d 5868 |
. . . . 5
⊢ (𝜑 → ((𝐹‘1)↑2) = ((𝐴 + 1)↑2)) |
45 | | binom21 10588 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
46 | 25, 45 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
47 | 44, 46 | eqtrd 2203 |
. . . 4
⊢ (𝜑 → ((𝐹‘1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
48 | 38, 47 | breqtrrd 4017 |
. . 3
⊢ (𝜑 → 𝐴 < ((𝐹‘1)↑2)) |
49 | 39, 17, 27 | resqrexlemf 10971 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
50 | 49 | ffvelrnda 5631 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈
ℝ+) |
51 | 50 | rpred 9653 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
52 | 17 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) |
53 | 52, 50 | rerpdivcld 9685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℝ) |
54 | 51, 53 | resubcld 8300 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
55 | 54 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
56 | 55 | resqcld 10635 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℝ) |
57 | | 4re 8955 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
58 | 57 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 ∈
ℝ) |
59 | 51 | resqcld 10635 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℝ) |
60 | 59, 52 | resubcld 8300 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) |
61 | 60 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) − 𝐴) ∈ ℝ) |
62 | 51 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℝ) |
63 | 52, 59 | posdifd 8451 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) ↔ 0 < (((𝐹‘𝑘)↑2) − 𝐴))) |
64 | 63 | biimpa 294 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘)↑2) − 𝐴)) |
65 | 50 | rpgt0d 9656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < (𝐹‘𝑘)) |
66 | 65 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (𝐹‘𝑘)) |
67 | 61, 62, 64, 66 | divgt0d 8851 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘))) |
68 | 51 | recnd 7948 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
69 | 68 | sqcld 10607 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)↑2) ∈ ℂ) |
70 | 69 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) ∈ ℂ) |
71 | 25 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
72 | 71 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℂ) |
73 | 68 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) ∈ ℂ) |
74 | 50 | rpap0d 9659 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) # 0) |
75 | 74 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐹‘𝑘) # 0) |
76 | 70, 72, 73, 75 | divsubdirapd 8747 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘)))) |
77 | 73 | sqvald 10606 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘)↑2) = ((𝐹‘𝑘) · (𝐹‘𝑘))) |
78 | 77 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘))) |
79 | 73, 73, 75 | divcanap3d 8712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘) · (𝐹‘𝑘)) / (𝐹‘𝑘)) = (𝐹‘𝑘)) |
80 | 78, 79 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) = (𝐹‘𝑘)) |
81 | 80 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) / (𝐹‘𝑘)) − (𝐴 / (𝐹‘𝑘))) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
82 | 76, 81 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘)↑2) − 𝐴) / (𝐹‘𝑘)) = ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
83 | 67, 82 | breqtrd 4015 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))) |
84 | 55, 83 | gt0ap0d 8548 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) # 0) |
85 | 55, 84 | sqgt0apd 10637 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2)) |
86 | | 4pos 8975 |
. . . . . . . . . 10
⊢ 0 <
4 |
87 | 86 | a1i 9 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < 4) |
88 | 56, 58, 85, 87 | divgt0d 8851 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4)) |
89 | 57, 86 | gt0ap0ii 8547 |
. . . . . . . . . . 11
⊢ 4 #
0 |
90 | 89 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 4 # 0) |
91 | 56, 58, 90 | redivclapd 8752 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ∈
ℝ) |
92 | 52 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 ∈ ℝ) |
93 | 91, 92 | ltaddpos2d 8449 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (0 < ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
94 | 88, 93 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
95 | 39, 17, 27 | resqrexlemfp1 10973 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) |
96 | 95 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2)) |
97 | 51, 53 | readdcld 7949 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℝ) |
98 | 97 | recnd 7948 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℂ) |
99 | | 2cnd 8951 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) |
100 | | 2ap0 8971 |
. . . . . . . . . . . . . . 15
⊢ 2 #
0 |
101 | 100 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 #
0) |
102 | 98, 99, 101 | sqdivapd 10622 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) |
103 | 96, 102 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2))) |
104 | | sq2 10571 |
. . . . . . . . . . . . 13
⊢
(2↑2) = 4 |
105 | 104 | oveq2i 5864 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / (2↑2)) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) |
106 | 103, 105 | eqtrdi 2219 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4)) |
107 | 71, 68, 74 | divcanap2d 8709 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))) = 𝐴) |
108 | 107 | oveq2d 5869 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘)))) = (2 · 𝐴)) |
109 | 108 | oveq2d 5869 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) |
110 | 109 | oveq1d 5868 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
111 | 110 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
112 | 53 | recnd 7948 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℂ) |
113 | | binom2sub 10589 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
114 | 68, 112, 113 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
115 | 114 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) = (((((𝐹‘𝑘)↑2) − (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
116 | | binom2 10587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐴 / (𝐹‘𝑘)) ∈ ℂ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
117 | 68, 112, 116 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2))) |
118 | 108 | oveq2d 5869 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) |
119 | 118 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · ((𝐹‘𝑘) · (𝐴 / (𝐹‘𝑘))))) + ((𝐴 / (𝐹‘𝑘))↑2)) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
120 | 117, 119 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
121 | 99, 71 | mulcld 7940 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℂ) |
122 | 121 | negcld 8217 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -(2 · 𝐴) ∈
ℂ) |
123 | | 4cn 8956 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℂ |
124 | 123 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℂ) |
125 | 124, 71 | mulcld 7940 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℂ) |
126 | 69, 122, 125 | addassd 7942 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴)))) |
127 | 69, 121 | negsubd 8236 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + -(2 · 𝐴)) = (((𝐹‘𝑘)↑2) − (2 · 𝐴))) |
128 | 127 | oveq1d 5868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + -(2 · 𝐴)) + (4 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) |
129 | | 2cn 8949 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℂ |
130 | 129 | negcli 8187 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -2 ∈
ℂ |
131 | 130 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → -2 ∈
ℂ) |
132 | 131, 124,
71 | adddird 7945 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = ((-2 · 𝐴) + (4 · 𝐴))) |
133 | 99, 71 | mulneg1d 8330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴)) |
134 | 133 | oveq1d 5868 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 · 𝐴) + (4 · 𝐴)) = (-(2 · 𝐴) + (4 · 𝐴))) |
135 | 132, 134 | eqtrd 2203 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((-2 + 4) ·
𝐴) = (-(2 · 𝐴) + (4 · 𝐴))) |
136 | 130, 129,
129 | addassi 7928 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = (-2 + (2 + 2)) |
137 | 129 | subidi 8190 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2
− 2) = 0 |
138 | 137 | negeqi 8113 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = -0 |
139 | 129, 129 | negsubdii 8204 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -(2
− 2) = (-2 + 2) |
140 | | neg0 8165 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 |
141 | 138, 139,
140 | 3eqtr3i 2199 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (-2 + 2)
= 0 |
142 | 141 | oveq1i 5863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-2 + 2)
+ 2) = (0 + 2) |
143 | 129 | addid2i 8062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 + 2) =
2 |
144 | 142, 143 | eqtri 2191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-2 + 2)
+ 2) = 2 |
145 | | 2p2e4 9005 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 + 2) =
4 |
146 | 145 | oveq2i 5864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-2 + (2
+ 2)) = (-2 + 4) |
147 | 136, 144,
146 | 3eqtr3ri 2200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-2 + 4)
= 2 |
148 | 147 | oveq1i 5863 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-2 + 4)
· 𝐴) = (2 ·
𝐴) |
149 | 135, 148 | eqtr3di 2218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (-(2 · 𝐴) + (4 · 𝐴)) = (2 · 𝐴)) |
150 | 149 | oveq2d 5869 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (-(2 · 𝐴) + (4 · 𝐴))) = (((𝐹‘𝑘)↑2) + (2 · 𝐴))) |
151 | 126, 128,
150 | 3eqtr3rd 2212 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) + (2 · 𝐴)) = ((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴))) |
152 | 151 | oveq1d 5868 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2))) |
153 | 19 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℝ) |
154 | 153, 52 | remulcld 7950 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝐴) ∈
ℝ) |
155 | 59, 154 | resubcld 8300 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)↑2) − (2 · 𝐴)) ∈
ℝ) |
156 | 57 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 ∈
ℝ) |
157 | 156, 52 | remulcld 7950 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (4 · 𝐴) ∈
ℝ) |
158 | 53 | resqcld 10635 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 / (𝐹‘𝑘))↑2) ∈ ℝ) |
159 | | recn 7907 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ ℝ → 𝑓 ∈
ℂ) |
160 | | recn 7907 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ ℝ → 𝑔 ∈
ℂ) |
161 | | addcom 8056 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
162 | 159, 160,
161 | syl2an 287 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
163 | 162 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 + 𝑔) = (𝑔 + 𝑓)) |
164 | | recn 7907 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ ℝ → ℎ ∈ ℂ) |
165 | | addass 7904 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ ℎ ∈ ℂ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
166 | 159, 160,
164, 165 | syl3an 1275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
167 | 166 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ ℎ ∈ ℝ)) → ((𝑓 + 𝑔) + ℎ) = (𝑓 + (𝑔 + ℎ))) |
168 | 155, 157,
158, 163, 167 | caov32d 6033 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + (4 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
169 | 120, 152,
168 | 3eqtrd 2207 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = (((((𝐹‘𝑘)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹‘𝑘))↑2)) + (4 · 𝐴))) |
170 | 111, 115,
169 | 3eqtr4rd 2214 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) = ((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴))) |
171 | 170 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))↑2) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) |
172 | 106, 171 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4)) |
173 | 68, 112 | subcld 8230 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘))) ∈ ℂ) |
174 | 173 | sqcld 10607 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) ∈ ℂ) |
175 | 89 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 4 #
0) |
176 | 174, 125,
124, 175 | divdirapd 8746 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) + (4 · 𝐴)) / 4) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4))) |
177 | 71, 124, 175 | divcanap3d 8712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴) |
178 | 177 | oveq2d 5869 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + ((4 · 𝐴) / 4)) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
179 | 172, 176,
178 | 3eqtrd 2207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) = (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴)) |
180 | 179 | breq2d 4001 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
181 | 180 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → (𝐴 < ((𝐹‘(𝑘 + 1))↑2) ↔ 𝐴 < (((((𝐹‘𝑘) − (𝐴 / (𝐹‘𝑘)))↑2) / 4) + 𝐴))) |
182 | 94, 181 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝐴 < ((𝐹‘𝑘)↑2)) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)) |
183 | 182 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2))) |
184 | 183 | expcom 115 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → (𝐴 < ((𝐹‘𝑘)↑2) → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
185 | 184 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → 𝐴 < ((𝐹‘𝑘)↑2)) → (𝜑 → 𝐴 < ((𝐹‘(𝑘 + 1))↑2)))) |
186 | 4, 8, 12, 16, 48, 185 | nnind 8894 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → 𝐴 < ((𝐹‘𝑁)↑2))) |
187 | 186 | impcom 124 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |