ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 GIF version

Theorem cosq34lt1 12977
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 12913 . . . . . . . 8 π ∈ ℝ
2 2re 8813 . . . . . . . . . 10 2 ∈ ℝ
32, 1remulcli 7803 . . . . . . . . 9 (2 · π) ∈ ℝ
43rexri 7846 . . . . . . . 8 (2 · π) ∈ ℝ*
5 elico2 9749 . . . . . . . 8 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
61, 4, 5mp2an 423 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
76simp1bi 997 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℝ)
87recnd 7817 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℂ)
9 2cn 8814 . . . . . . 7 2 ∈ ℂ
10 picn 12914 . . . . . . 7 π ∈ ℂ
119, 10mulcli 7794 . . . . . 6 (2 · π) ∈ ℂ
1211a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℂ)
138, 12subcld 8096 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℂ)
14 cosneg 11468 . . . 4 ((𝐴 − (2 · π)) ∈ ℂ → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1513, 14syl 14 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1612mulm1d 8195 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (-1 · (2 · π)) = -(2 · π))
1716oveq2d 5797 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 + -(2 · π)))
188, 12negsubd 8102 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + -(2 · π)) = (𝐴 − (2 · π)))
1917, 18eqtrd 2173 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 − (2 · π)))
2019fveq2d 5432 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘(𝐴 − (2 · π))))
21 neg1z 9109 . . . 4 -1 ∈ ℤ
22 cosper 12937 . . . 4 ((𝐴 ∈ ℂ ∧ -1 ∈ ℤ) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
238, 21, 22sylancl 410 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
2415, 20, 233eqtr2d 2179 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘𝐴))
25 0xr 7835 . . . . 5 0 ∈ ℝ*
261rexri 7846 . . . . 5 π ∈ ℝ*
27 0re 7789 . . . . . . 7 0 ∈ ℝ
28 pipos 12915 . . . . . . 7 0 < π
2927, 1, 28ltleii 7889 . . . . . 6 0 ≤ π
3029a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ π)
31 lbicc2 9796 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
3225, 26, 30, 31mp3an12i 1320 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ (0[,]π))
333a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℝ)
347, 33resubcld 8166 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℝ)
3534renegcld 8165 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ ℝ)
3627a1i 9 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ ℝ)
376simp3bi 999 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 < (2 · π))
387, 33posdifd 8317 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 < (2 · π) ↔ 0 < ((2 · π) − 𝐴)))
3937, 38mpbid 146 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → 0 < ((2 · π) − 𝐴))
408, 12negsubdi2d 8112 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) = ((2 · π) − 𝐴))
4139, 40breqtrrd 3963 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 < -(𝐴 − (2 · π)))
4236, 35, 41ltled 7904 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ -(𝐴 − (2 · π)))
431a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → π ∈ ℝ)
44 ax-1cn 7736 . . . . . . . . . 10 1 ∈ ℂ
459, 44, 10subdiri 8193 . . . . . . . . 9 ((2 − 1) · π) = ((2 · π) − (1 · π))
46 2m1e1 8861 . . . . . . . . . . 11 (2 − 1) = 1
4746oveq1i 5791 . . . . . . . . . 10 ((2 − 1) · π) = (1 · π)
4810mulid2i 7792 . . . . . . . . . 10 (1 · π) = π
4947, 48eqtri 2161 . . . . . . . . 9 ((2 − 1) · π) = π
5048oveq2i 5792 . . . . . . . . 9 ((2 · π) − (1 · π)) = ((2 · π) − π)
5145, 49, 503eqtr3ri 2170 . . . . . . . 8 ((2 · π) − π) = π
526simp2bi 998 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → π ≤ 𝐴)
5351, 52eqbrtrid 3970 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − π) ≤ 𝐴)
5433, 43, 7, 53subled 8333 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − 𝐴) ≤ π)
5540, 54eqbrtrd 3957 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ≤ π)
5627, 1elicc2i 9751 . . . . 5 (-(𝐴 − (2 · π)) ∈ (0[,]π) ↔ (-(𝐴 − (2 · π)) ∈ ℝ ∧ 0 ≤ -(𝐴 − (2 · π)) ∧ -(𝐴 − (2 · π)) ≤ π))
5735, 42, 55, 56syl3anbrc 1166 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ (0[,]π))
5832, 57, 41cosordlem 12976 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < (cos‘0))
59 cos0 11471 . . 3 (cos‘0) = 1
6058, 59breqtrdi 3976 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < 1)
6124, 60eqbrtrrd 3959 1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3936  cfv 5130  (class class class)co 5781  cc 7641  cr 7642  0cc0 7643  1c1 7644   + caddc 7646   · cmul 7648  *cxr 7822   < clt 7823  cle 7824  cmin 7956  -cneg 7957  2c2 8794  cz 9077  [,)cico 9702  [,]cicc 9703  cosccos 11386  πcpi 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763  ax-pre-suploc 7764  ax-addf 7765  ax-mulf 7766
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-disj 3914  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-of 5989  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-frec 6295  df-1o 6320  df-oadd 6324  df-er 6436  df-map 6551  df-pm 6552  df-en 6642  df-dom 6643  df-fin 6644  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-5 8805  df-6 8806  df-7 8807  df-8 8808  df-9 8809  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-xneg 9588  df-xadd 9589  df-ioo 9704  df-ioc 9705  df-ico 9706  df-icc 9707  df-fz 9821  df-fzo 9950  df-seqfrec 10249  df-exp 10323  df-fac 10503  df-bc 10525  df-ihash 10553  df-shft 10618  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-clim 11079  df-sumdc 11154  df-ef 11389  df-sin 11391  df-cos 11392  df-pi 11394  df-rest 12159  df-topgen 12178  df-psmet 12193  df-xmet 12194  df-met 12195  df-bl 12196  df-mopn 12197  df-top 12202  df-topon 12215  df-bases 12247  df-ntr 12302  df-cn 12394  df-cnp 12395  df-tx 12459  df-cncf 12764  df-limced 12831  df-dvap 12832
This theorem is referenced by:  cos02pilt1  12978
  Copyright terms: Public domain W3C validator