ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 GIF version

Theorem cosq34lt1 15086
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 15022 . . . . . . . 8 π ∈ ℝ
2 2re 9060 . . . . . . . . . 10 2 ∈ ℝ
32, 1remulcli 8040 . . . . . . . . 9 (2 · π) ∈ ℝ
43rexri 8084 . . . . . . . 8 (2 · π) ∈ ℝ*
5 elico2 10012 . . . . . . . 8 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
61, 4, 5mp2an 426 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
76simp1bi 1014 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℝ)
87recnd 8055 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℂ)
9 2cn 9061 . . . . . . 7 2 ∈ ℂ
10 picn 15023 . . . . . . 7 π ∈ ℂ
119, 10mulcli 8031 . . . . . 6 (2 · π) ∈ ℂ
1211a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℂ)
138, 12subcld 8337 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℂ)
14 cosneg 11892 . . . 4 ((𝐴 − (2 · π)) ∈ ℂ → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1513, 14syl 14 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1612mulm1d 8436 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (-1 · (2 · π)) = -(2 · π))
1716oveq2d 5938 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 + -(2 · π)))
188, 12negsubd 8343 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + -(2 · π)) = (𝐴 − (2 · π)))
1917, 18eqtrd 2229 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 − (2 · π)))
2019fveq2d 5562 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘(𝐴 − (2 · π))))
21 neg1z 9358 . . . 4 -1 ∈ ℤ
22 cosper 15046 . . . 4 ((𝐴 ∈ ℂ ∧ -1 ∈ ℤ) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
238, 21, 22sylancl 413 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
2415, 20, 233eqtr2d 2235 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘𝐴))
25 0xr 8073 . . . . 5 0 ∈ ℝ*
261rexri 8084 . . . . 5 π ∈ ℝ*
27 0re 8026 . . . . . . 7 0 ∈ ℝ
28 pipos 15024 . . . . . . 7 0 < π
2927, 1, 28ltleii 8129 . . . . . 6 0 ≤ π
3029a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ π)
31 lbicc2 10059 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
3225, 26, 30, 31mp3an12i 1352 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ (0[,]π))
333a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℝ)
347, 33resubcld 8407 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℝ)
3534renegcld 8406 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ ℝ)
3627a1i 9 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ ℝ)
376simp3bi 1016 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 < (2 · π))
387, 33posdifd 8559 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 < (2 · π) ↔ 0 < ((2 · π) − 𝐴)))
3937, 38mpbid 147 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → 0 < ((2 · π) − 𝐴))
408, 12negsubdi2d 8353 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) = ((2 · π) − 𝐴))
4139, 40breqtrrd 4061 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 < -(𝐴 − (2 · π)))
4236, 35, 41ltled 8145 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ -(𝐴 − (2 · π)))
431a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → π ∈ ℝ)
44 ax-1cn 7972 . . . . . . . . . 10 1 ∈ ℂ
459, 44, 10subdiri 8434 . . . . . . . . 9 ((2 − 1) · π) = ((2 · π) − (1 · π))
46 2m1e1 9108 . . . . . . . . . . 11 (2 − 1) = 1
4746oveq1i 5932 . . . . . . . . . 10 ((2 − 1) · π) = (1 · π)
4810mullidi 8029 . . . . . . . . . 10 (1 · π) = π
4947, 48eqtri 2217 . . . . . . . . 9 ((2 − 1) · π) = π
5048oveq2i 5933 . . . . . . . . 9 ((2 · π) − (1 · π)) = ((2 · π) − π)
5145, 49, 503eqtr3ri 2226 . . . . . . . 8 ((2 · π) − π) = π
526simp2bi 1015 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → π ≤ 𝐴)
5351, 52eqbrtrid 4068 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − π) ≤ 𝐴)
5433, 43, 7, 53subled 8575 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − 𝐴) ≤ π)
5540, 54eqbrtrd 4055 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ≤ π)
5627, 1elicc2i 10014 . . . . 5 (-(𝐴 − (2 · π)) ∈ (0[,]π) ↔ (-(𝐴 − (2 · π)) ∈ ℝ ∧ 0 ≤ -(𝐴 − (2 · π)) ∧ -(𝐴 − (2 · π)) ≤ π))
5735, 42, 55, 56syl3anbrc 1183 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ (0[,]π))
5832, 57, 41cosordlem 15085 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < (cos‘0))
59 cos0 11895 . . 3 (cos‘0) = 1
6058, 59breqtrdi 4074 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < 1)
6124, 60eqbrtrrd 4057 1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  *cxr 8060   < clt 8061  cle 8062  cmin 8197  -cneg 8198  2c2 9041  cz 9326  [,)cico 9965  [,]cicc 9966  cosccos 11810  πcpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  cos02pilt1  15087
  Copyright terms: Public domain W3C validator