ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 GIF version

Theorem cosq34lt1 15397
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 15333 . . . . . . . 8 π ∈ ℝ
2 2re 9126 . . . . . . . . . 10 2 ∈ ℝ
32, 1remulcli 8106 . . . . . . . . 9 (2 · π) ∈ ℝ
43rexri 8150 . . . . . . . 8 (2 · π) ∈ ℝ*
5 elico2 10079 . . . . . . . 8 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
61, 4, 5mp2an 426 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
76simp1bi 1015 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℝ)
87recnd 8121 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℂ)
9 2cn 9127 . . . . . . 7 2 ∈ ℂ
10 picn 15334 . . . . . . 7 π ∈ ℂ
119, 10mulcli 8097 . . . . . 6 (2 · π) ∈ ℂ
1211a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℂ)
138, 12subcld 8403 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℂ)
14 cosneg 12113 . . . 4 ((𝐴 − (2 · π)) ∈ ℂ → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1513, 14syl 14 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1612mulm1d 8502 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (-1 · (2 · π)) = -(2 · π))
1716oveq2d 5973 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 + -(2 · π)))
188, 12negsubd 8409 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + -(2 · π)) = (𝐴 − (2 · π)))
1917, 18eqtrd 2239 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 − (2 · π)))
2019fveq2d 5593 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘(𝐴 − (2 · π))))
21 neg1z 9424 . . . 4 -1 ∈ ℤ
22 cosper 15357 . . . 4 ((𝐴 ∈ ℂ ∧ -1 ∈ ℤ) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
238, 21, 22sylancl 413 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
2415, 20, 233eqtr2d 2245 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘𝐴))
25 0xr 8139 . . . . 5 0 ∈ ℝ*
261rexri 8150 . . . . 5 π ∈ ℝ*
27 0re 8092 . . . . . . 7 0 ∈ ℝ
28 pipos 15335 . . . . . . 7 0 < π
2927, 1, 28ltleii 8195 . . . . . 6 0 ≤ π
3029a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ π)
31 lbicc2 10126 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
3225, 26, 30, 31mp3an12i 1354 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ (0[,]π))
333a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℝ)
347, 33resubcld 8473 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℝ)
3534renegcld 8472 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ ℝ)
3627a1i 9 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ ℝ)
376simp3bi 1017 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 < (2 · π))
387, 33posdifd 8625 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 < (2 · π) ↔ 0 < ((2 · π) − 𝐴)))
3937, 38mpbid 147 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → 0 < ((2 · π) − 𝐴))
408, 12negsubdi2d 8419 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) = ((2 · π) − 𝐴))
4139, 40breqtrrd 4079 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 < -(𝐴 − (2 · π)))
4236, 35, 41ltled 8211 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ -(𝐴 − (2 · π)))
431a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → π ∈ ℝ)
44 ax-1cn 8038 . . . . . . . . . 10 1 ∈ ℂ
459, 44, 10subdiri 8500 . . . . . . . . 9 ((2 − 1) · π) = ((2 · π) − (1 · π))
46 2m1e1 9174 . . . . . . . . . . 11 (2 − 1) = 1
4746oveq1i 5967 . . . . . . . . . 10 ((2 − 1) · π) = (1 · π)
4810mullidi 8095 . . . . . . . . . 10 (1 · π) = π
4947, 48eqtri 2227 . . . . . . . . 9 ((2 − 1) · π) = π
5048oveq2i 5968 . . . . . . . . 9 ((2 · π) − (1 · π)) = ((2 · π) − π)
5145, 49, 503eqtr3ri 2236 . . . . . . . 8 ((2 · π) − π) = π
526simp2bi 1016 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → π ≤ 𝐴)
5351, 52eqbrtrid 4086 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − π) ≤ 𝐴)
5433, 43, 7, 53subled 8641 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − 𝐴) ≤ π)
5540, 54eqbrtrd 4073 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ≤ π)
5627, 1elicc2i 10081 . . . . 5 (-(𝐴 − (2 · π)) ∈ (0[,]π) ↔ (-(𝐴 − (2 · π)) ∈ ℝ ∧ 0 ≤ -(𝐴 − (2 · π)) ∧ -(𝐴 − (2 · π)) ≤ π))
5735, 42, 55, 56syl3anbrc 1184 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ (0[,]π))
5832, 57, 41cosordlem 15396 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < (cos‘0))
59 cos0 12116 . . 3 (cos‘0) = 1
6058, 59breqtrdi 4092 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < 1)
6124, 60eqbrtrrd 4075 1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950  *cxr 8126   < clt 8127  cle 8128  cmin 8263  -cneg 8264  2c2 9107  cz 9392  [,)cico 10032  [,]cicc 10033  cosccos 12031  πcpi 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-pre-suploc 8066  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ioo 10034  df-ioc 10035  df-ico 10036  df-icc 10037  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-cos 12037  df-pi 12039  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204
This theorem is referenced by:  cos02pilt1  15398
  Copyright terms: Public domain W3C validator