ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 GIF version

Theorem cosq34lt1 14985
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 14921 . . . . . . . 8 π ∈ ℝ
2 2re 9052 . . . . . . . . . 10 2 ∈ ℝ
32, 1remulcli 8033 . . . . . . . . 9 (2 · π) ∈ ℝ
43rexri 8077 . . . . . . . 8 (2 · π) ∈ ℝ*
5 elico2 10003 . . . . . . . 8 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
61, 4, 5mp2an 426 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
76simp1bi 1014 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℝ)
87recnd 8048 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℂ)
9 2cn 9053 . . . . . . 7 2 ∈ ℂ
10 picn 14922 . . . . . . 7 π ∈ ℂ
119, 10mulcli 8024 . . . . . 6 (2 · π) ∈ ℂ
1211a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℂ)
138, 12subcld 8330 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℂ)
14 cosneg 11870 . . . 4 ((𝐴 − (2 · π)) ∈ ℂ → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1513, 14syl 14 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1612mulm1d 8429 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (-1 · (2 · π)) = -(2 · π))
1716oveq2d 5934 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 + -(2 · π)))
188, 12negsubd 8336 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + -(2 · π)) = (𝐴 − (2 · π)))
1917, 18eqtrd 2226 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 − (2 · π)))
2019fveq2d 5558 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘(𝐴 − (2 · π))))
21 neg1z 9349 . . . 4 -1 ∈ ℤ
22 cosper 14945 . . . 4 ((𝐴 ∈ ℂ ∧ -1 ∈ ℤ) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
238, 21, 22sylancl 413 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
2415, 20, 233eqtr2d 2232 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘𝐴))
25 0xr 8066 . . . . 5 0 ∈ ℝ*
261rexri 8077 . . . . 5 π ∈ ℝ*
27 0re 8019 . . . . . . 7 0 ∈ ℝ
28 pipos 14923 . . . . . . 7 0 < π
2927, 1, 28ltleii 8122 . . . . . 6 0 ≤ π
3029a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ π)
31 lbicc2 10050 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
3225, 26, 30, 31mp3an12i 1352 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ (0[,]π))
333a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℝ)
347, 33resubcld 8400 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℝ)
3534renegcld 8399 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ ℝ)
3627a1i 9 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ ℝ)
376simp3bi 1016 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 < (2 · π))
387, 33posdifd 8551 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 < (2 · π) ↔ 0 < ((2 · π) − 𝐴)))
3937, 38mpbid 147 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → 0 < ((2 · π) − 𝐴))
408, 12negsubdi2d 8346 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) = ((2 · π) − 𝐴))
4139, 40breqtrrd 4057 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 < -(𝐴 − (2 · π)))
4236, 35, 41ltled 8138 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ -(𝐴 − (2 · π)))
431a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → π ∈ ℝ)
44 ax-1cn 7965 . . . . . . . . . 10 1 ∈ ℂ
459, 44, 10subdiri 8427 . . . . . . . . 9 ((2 − 1) · π) = ((2 · π) − (1 · π))
46 2m1e1 9100 . . . . . . . . . . 11 (2 − 1) = 1
4746oveq1i 5928 . . . . . . . . . 10 ((2 − 1) · π) = (1 · π)
4810mullidi 8022 . . . . . . . . . 10 (1 · π) = π
4947, 48eqtri 2214 . . . . . . . . 9 ((2 − 1) · π) = π
5048oveq2i 5929 . . . . . . . . 9 ((2 · π) − (1 · π)) = ((2 · π) − π)
5145, 49, 503eqtr3ri 2223 . . . . . . . 8 ((2 · π) − π) = π
526simp2bi 1015 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → π ≤ 𝐴)
5351, 52eqbrtrid 4064 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − π) ≤ 𝐴)
5433, 43, 7, 53subled 8567 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − 𝐴) ≤ π)
5540, 54eqbrtrd 4051 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ≤ π)
5627, 1elicc2i 10005 . . . . 5 (-(𝐴 − (2 · π)) ∈ (0[,]π) ↔ (-(𝐴 − (2 · π)) ∈ ℝ ∧ 0 ≤ -(𝐴 − (2 · π)) ∧ -(𝐴 − (2 · π)) ≤ π))
5735, 42, 55, 56syl3anbrc 1183 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ (0[,]π))
5832, 57, 41cosordlem 14984 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < (cos‘0))
59 cos0 11873 . . 3 (cos‘0) = 1
6058, 59breqtrdi 4070 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < 1)
6124, 60eqbrtrrd 4053 1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  *cxr 8053   < clt 8054  cle 8055  cmin 8190  -cneg 8191  2c2 9033  cz 9317  [,)cico 9956  [,]cicc 9957  cosccos 11788  πcpi 11790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ioc 9959  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-sin 11793  df-cos 11794  df-pi 11796  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  cos02pilt1  14986
  Copyright terms: Public domain W3C validator