ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 GIF version

Theorem cosq34lt1 15240
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 15176 . . . . . . . 8 π ∈ ℝ
2 2re 9088 . . . . . . . . . 10 2 ∈ ℝ
32, 1remulcli 8068 . . . . . . . . 9 (2 · π) ∈ ℝ
43rexri 8112 . . . . . . . 8 (2 · π) ∈ ℝ*
5 elico2 10041 . . . . . . . 8 ((π ∈ ℝ ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π))))
61, 4, 5mp2an 426 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ π ≤ 𝐴𝐴 < (2 · π)))
76simp1bi 1014 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℝ)
87recnd 8083 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 ∈ ℂ)
9 2cn 9089 . . . . . . 7 2 ∈ ℂ
10 picn 15177 . . . . . . 7 π ∈ ℂ
119, 10mulcli 8059 . . . . . 6 (2 · π) ∈ ℂ
1211a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℂ)
138, 12subcld 8365 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℂ)
14 cosneg 11957 . . . 4 ((𝐴 − (2 · π)) ∈ ℂ → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1513, 14syl 14 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘(𝐴 − (2 · π))))
1612mulm1d 8464 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (-1 · (2 · π)) = -(2 · π))
1716oveq2d 5950 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 + -(2 · π)))
188, 12negsubd 8371 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + -(2 · π)) = (𝐴 − (2 · π)))
1917, 18eqtrd 2237 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 + (-1 · (2 · π))) = (𝐴 − (2 · π)))
2019fveq2d 5574 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘(𝐴 − (2 · π))))
21 neg1z 9386 . . . 4 -1 ∈ ℤ
22 cosper 15200 . . . 4 ((𝐴 ∈ ℂ ∧ -1 ∈ ℤ) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
238, 21, 22sylancl 413 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘(𝐴 + (-1 · (2 · π)))) = (cos‘𝐴))
2415, 20, 233eqtr2d 2243 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) = (cos‘𝐴))
25 0xr 8101 . . . . 5 0 ∈ ℝ*
261rexri 8112 . . . . 5 π ∈ ℝ*
27 0re 8054 . . . . . . 7 0 ∈ ℝ
28 pipos 15178 . . . . . . 7 0 < π
2927, 1, 28ltleii 8157 . . . . . 6 0 ≤ π
3029a1i 9 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ π)
31 lbicc2 10088 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
3225, 26, 30, 31mp3an12i 1353 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ (0[,]π))
333a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → (2 · π) ∈ ℝ)
347, 33resubcld 8435 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 − (2 · π)) ∈ ℝ)
3534renegcld 8434 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ ℝ)
3627a1i 9 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 ∈ ℝ)
376simp3bi 1016 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → 𝐴 < (2 · π))
387, 33posdifd 8587 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → (𝐴 < (2 · π) ↔ 0 < ((2 · π) − 𝐴)))
3937, 38mpbid 147 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → 0 < ((2 · π) − 𝐴))
408, 12negsubdi2d 8381 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) = ((2 · π) − 𝐴))
4139, 40breqtrrd 4071 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → 0 < -(𝐴 − (2 · π)))
4236, 35, 41ltled 8173 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → 0 ≤ -(𝐴 − (2 · π)))
431a1i 9 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → π ∈ ℝ)
44 ax-1cn 8000 . . . . . . . . . 10 1 ∈ ℂ
459, 44, 10subdiri 8462 . . . . . . . . 9 ((2 − 1) · π) = ((2 · π) − (1 · π))
46 2m1e1 9136 . . . . . . . . . . 11 (2 − 1) = 1
4746oveq1i 5944 . . . . . . . . . 10 ((2 − 1) · π) = (1 · π)
4810mullidi 8057 . . . . . . . . . 10 (1 · π) = π
4947, 48eqtri 2225 . . . . . . . . 9 ((2 − 1) · π) = π
5048oveq2i 5945 . . . . . . . . 9 ((2 · π) − (1 · π)) = ((2 · π) − π)
5145, 49, 503eqtr3ri 2234 . . . . . . . 8 ((2 · π) − π) = π
526simp2bi 1015 . . . . . . . 8 (𝐴 ∈ (π[,)(2 · π)) → π ≤ 𝐴)
5351, 52eqbrtrid 4078 . . . . . . 7 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − π) ≤ 𝐴)
5433, 43, 7, 53subled 8603 . . . . . 6 (𝐴 ∈ (π[,)(2 · π)) → ((2 · π) − 𝐴) ≤ π)
5540, 54eqbrtrd 4065 . . . . 5 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ≤ π)
5627, 1elicc2i 10043 . . . . 5 (-(𝐴 − (2 · π)) ∈ (0[,]π) ↔ (-(𝐴 − (2 · π)) ∈ ℝ ∧ 0 ≤ -(𝐴 − (2 · π)) ∧ -(𝐴 − (2 · π)) ≤ π))
5735, 42, 55, 56syl3anbrc 1183 . . . 4 (𝐴 ∈ (π[,)(2 · π)) → -(𝐴 − (2 · π)) ∈ (0[,]π))
5832, 57, 41cosordlem 15239 . . 3 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < (cos‘0))
59 cos0 11960 . . 3 (cos‘0) = 1
6058, 59breqtrdi 4084 . 2 (𝐴 ∈ (π[,)(2 · π)) → (cos‘-(𝐴 − (2 · π))) < 1)
6124, 60eqbrtrrd 4067 1 (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912  *cxr 8088   < clt 8089  cle 8090  cmin 8225  -cneg 8226  2c2 9069  cz 9354  [,)cico 9994  [,]cicc 9995  cosccos 11875  πcpi 11877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027  ax-pre-suploc 8028  ax-addf 8029  ax-mulf 8030
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-of 6148  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-map 6727  df-pm 6728  df-en 6818  df-dom 6819  df-fin 6820  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-ioo 9996  df-ioc 9997  df-ico 9998  df-icc 9999  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-bc 10874  df-ihash 10902  df-shft 11045  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584  df-ef 11878  df-sin 11880  df-cos 11881  df-pi 11883  df-rest 12991  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-met 14225  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433  df-ntr 14486  df-cn 14578  df-cnp 14579  df-tx 14643  df-cncf 14961  df-limced 15046  df-dvap 15047
This theorem is referenced by:  cos02pilt1  15241
  Copyright terms: Public domain W3C validator