| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2219 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2219 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbvarg 3112 un12 3322 in12 3375 indif1 3409 difundir 3417 difindir 3419 dif32 3427 resmpt3 4996 xp0 5090 fvsnun1 5762 caov12 6116 caov13 6118 djuassen 7302 xpdjuen 7303 rec1nq 7481 halfnqq 7496 negsubdii 8330 halfpm6th 9230 decmul1 9539 i4 10753 fac4 10844 imi 11084 resqrexlemover 11194 ef01bndlem 11940 modsubi 12615 gcdmodi 12617 numexpp1 12620 karatsuba 12626 znnen 12642 sn0cld 14481 cospi 15144 sincos4thpi 15184 sincos3rdpi 15187 lgsdir2lem1 15377 lgsdir2lem5 15381 2lgsoddprmlem3d 15459 ex-bc 15483 ex-gcd 15485 |
| Copyright terms: Public domain | W3C validator |