| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2227 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2227 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: csbvarg 3120 un12 3330 in12 3383 indif1 3417 difundir 3425 difindir 3427 dif32 3435 resmpt3 5007 xp0 5101 fvsnun1 5780 caov12 6134 caov13 6136 djuassen 7328 xpdjuen 7329 rec1nq 7507 halfnqq 7522 negsubdii 8356 halfpm6th 9256 decmul1 9566 i4 10785 fac4 10876 imi 11182 resqrexlemover 11292 ef01bndlem 12038 modsubi 12713 gcdmodi 12715 numexpp1 12718 karatsuba 12724 znnen 12740 sn0cld 14580 cospi 15243 sincos4thpi 15283 sincos3rdpi 15286 lgsdir2lem1 15476 lgsdir2lem5 15480 2lgsoddprmlem3d 15558 ex-bc 15627 ex-gcd 15629 |
| Copyright terms: Public domain | W3C validator |