| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2219 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2219 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbvarg 3112 un12 3322 in12 3375 indif1 3409 difundir 3417 difindir 3419 dif32 3427 resmpt3 4996 xp0 5090 fvsnun1 5762 caov12 6116 caov13 6118 djuassen 7300 xpdjuen 7301 rec1nq 7479 halfnqq 7494 negsubdii 8328 halfpm6th 9228 decmul1 9537 i4 10751 fac4 10842 imi 11082 resqrexlemover 11192 ef01bndlem 11938 modsubi 12613 gcdmodi 12615 numexpp1 12618 karatsuba 12624 znnen 12640 sn0cld 14457 cospi 15120 sincos4thpi 15160 sincos3rdpi 15163 lgsdir2lem1 15353 lgsdir2lem5 15357 2lgsoddprmlem3d 15435 ex-bc 15459 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |