ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3i GIF version

Theorem 3eqtr3i 2199
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3i 𝐶 = 𝐷

Proof of Theorem 3eqtr3i
StepHypRef Expression
1 3eqtr3i.1 . . 3 𝐴 = 𝐵
2 3eqtr3i.2 . . 3 𝐴 = 𝐶
31, 2eqtr3i 2193 . 2 𝐵 = 𝐶
4 3eqtr3i.3 . 2 𝐵 = 𝐷
53, 4eqtr3i 2193 1 𝐶 = 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163
This theorem is referenced by:  csbvarg  3077  un12  3285  in12  3338  indif1  3372  difundir  3380  difindir  3382  dif32  3390  resmpt3  4940  xp0  5030  fvsnun1  5693  caov12  6041  caov13  6043  djuassen  7194  xpdjuen  7195  rec1nq  7357  halfnqq  7372  negsubdii  8204  halfpm6th  9098  decmul1  9406  i4  10578  fac4  10667  imi  10864  resqrexlemover  10974  ef01bndlem  11719  znnen  12353  sn0cld  12931  cospi  13515  sincos4thpi  13555  sincos3rdpi  13558  lgsdir2lem1  13723  lgsdir2lem5  13727  ex-bc  13764  ex-gcd  13766
  Copyright terms: Public domain W3C validator