| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2252 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2252 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: csbvarg 3152 un12 3362 in12 3415 indif1 3449 difundir 3457 difindir 3459 dif32 3467 resmpt3 5053 xp0 5147 fvsnun1 5835 caov12 6193 caov13 6195 djuassen 7395 xpdjuen 7396 rec1nq 7578 halfnqq 7593 negsubdii 8427 halfpm6th 9327 decmul1 9637 i4 10859 fac4 10950 imi 11406 resqrexlemover 11516 ef01bndlem 12262 modsubi 12937 gcdmodi 12939 numexpp1 12942 karatsuba 12948 znnen 12964 sn0cld 14805 cospi 15468 sincos4thpi 15508 sincos3rdpi 15511 lgsdir2lem1 15701 lgsdir2lem5 15705 2lgsoddprmlem3d 15783 ex-bc 16051 ex-gcd 16053 |
| Copyright terms: Public domain | W3C validator |