ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3i GIF version

Theorem 3eqtr3i 2225
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3i 𝐶 = 𝐷

Proof of Theorem 3eqtr3i
StepHypRef Expression
1 3eqtr3i.1 . . 3 𝐴 = 𝐵
2 3eqtr3i.2 . . 3 𝐴 = 𝐶
31, 2eqtr3i 2219 . 2 𝐵 = 𝐶
4 3eqtr3i.3 . 2 𝐵 = 𝐷
53, 4eqtr3i 2219 1 𝐶 = 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  csbvarg  3112  un12  3322  in12  3375  indif1  3409  difundir  3417  difindir  3419  dif32  3427  resmpt3  4996  xp0  5090  fvsnun1  5762  caov12  6116  caov13  6118  djuassen  7302  xpdjuen  7303  rec1nq  7481  halfnqq  7496  negsubdii  8330  halfpm6th  9230  decmul1  9539  i4  10753  fac4  10844  imi  11084  resqrexlemover  11194  ef01bndlem  11940  modsubi  12615  gcdmodi  12617  numexpp1  12620  karatsuba  12626  znnen  12642  sn0cld  14481  cospi  15144  sincos4thpi  15184  sincos3rdpi  15187  lgsdir2lem1  15377  lgsdir2lem5  15381  2lgsoddprmlem3d  15459  ex-bc  15483  ex-gcd  15485
  Copyright terms: Public domain W3C validator