Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2193 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2193 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbvarg 3077 un12 3285 in12 3338 indif1 3372 difundir 3380 difindir 3382 dif32 3390 resmpt3 4938 xp0 5028 fvsnun1 5690 caov12 6038 caov13 6040 djuassen 7181 xpdjuen 7182 rec1nq 7344 halfnqq 7359 negsubdii 8191 halfpm6th 9085 decmul1 9393 i4 10565 fac4 10654 imi 10851 resqrexlemover 10961 ef01bndlem 11706 znnen 12340 sn0cld 12852 cospi 13436 sincos4thpi 13476 sincos3rdpi 13479 lgsdir2lem1 13644 lgsdir2lem5 13648 ex-bc 13685 ex-gcd 13687 |
Copyright terms: Public domain | W3C validator |