Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2188 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2188 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: csbvarg 3073 un12 3280 in12 3333 indif1 3367 difundir 3375 difindir 3377 dif32 3385 resmpt3 4933 xp0 5023 fvsnun1 5682 caov12 6030 caov13 6032 djuassen 7173 xpdjuen 7174 rec1nq 7336 halfnqq 7351 negsubdii 8183 halfpm6th 9077 decmul1 9385 i4 10557 fac4 10646 imi 10842 resqrexlemover 10952 ef01bndlem 11697 znnen 12331 sn0cld 12777 cospi 13361 sincos4thpi 13401 sincos3rdpi 13404 lgsdir2lem1 13569 lgsdir2lem5 13573 ex-bc 13610 ex-gcd 13612 |
Copyright terms: Public domain | W3C validator |