![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2200 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2200 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: csbvarg 3087 un12 3295 in12 3348 indif1 3382 difundir 3390 difindir 3392 dif32 3400 resmpt3 4958 xp0 5050 fvsnun1 5715 caov12 6065 caov13 6067 djuassen 7218 xpdjuen 7219 rec1nq 7396 halfnqq 7411 negsubdii 8244 halfpm6th 9141 decmul1 9449 i4 10625 fac4 10715 imi 10911 resqrexlemover 11021 ef01bndlem 11766 znnen 12401 sn0cld 13722 cospi 14306 sincos4thpi 14346 sincos3rdpi 14349 lgsdir2lem1 14514 lgsdir2lem5 14518 2lgsoddprmlem3d 14543 ex-bc 14566 ex-gcd 14568 |
Copyright terms: Public domain | W3C validator |