![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2212 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2212 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 |
This theorem is referenced by: csbvarg 3100 un12 3308 in12 3361 indif1 3395 difundir 3403 difindir 3405 dif32 3413 resmpt3 4974 xp0 5066 fvsnun1 5733 caov12 6084 caov13 6086 djuassen 7245 xpdjuen 7246 rec1nq 7423 halfnqq 7438 negsubdii 8271 halfpm6th 9168 decmul1 9476 i4 10653 fac4 10744 imi 10940 resqrexlemover 11050 ef01bndlem 11795 znnen 12448 sn0cld 14089 cospi 14673 sincos4thpi 14713 sincos3rdpi 14716 lgsdir2lem1 14882 lgsdir2lem5 14886 2lgsoddprmlem3d 14911 ex-bc 14934 ex-gcd 14936 |
Copyright terms: Public domain | W3C validator |