| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2230 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2230 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: csbvarg 3129 un12 3339 in12 3392 indif1 3426 difundir 3434 difindir 3436 dif32 3444 resmpt3 5027 xp0 5121 fvsnun1 5804 caov12 6158 caov13 6160 djuassen 7360 xpdjuen 7361 rec1nq 7543 halfnqq 7558 negsubdii 8392 halfpm6th 9292 decmul1 9602 i4 10824 fac4 10915 imi 11326 resqrexlemover 11436 ef01bndlem 12182 modsubi 12857 gcdmodi 12859 numexpp1 12862 karatsuba 12868 znnen 12884 sn0cld 14724 cospi 15387 sincos4thpi 15427 sincos3rdpi 15430 lgsdir2lem1 15620 lgsdir2lem5 15624 2lgsoddprmlem3d 15702 ex-bc 15865 ex-gcd 15867 |
| Copyright terms: Public domain | W3C validator |