Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2193 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2193 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbvarg 3077 un12 3285 in12 3338 indif1 3372 difundir 3380 difindir 3382 dif32 3390 resmpt3 4940 xp0 5030 fvsnun1 5693 caov12 6041 caov13 6043 djuassen 7194 xpdjuen 7195 rec1nq 7357 halfnqq 7372 negsubdii 8204 halfpm6th 9098 decmul1 9406 i4 10578 fac4 10667 imi 10864 resqrexlemover 10974 ef01bndlem 11719 znnen 12353 sn0cld 12931 cospi 13515 sincos4thpi 13555 sincos3rdpi 13558 lgsdir2lem1 13723 lgsdir2lem5 13727 ex-bc 13764 ex-gcd 13766 |
Copyright terms: Public domain | W3C validator |