![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 1, 2 | eqtr3i 2216 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtr3i 2216 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: csbvarg 3109 un12 3318 in12 3371 indif1 3405 difundir 3413 difindir 3415 dif32 3423 resmpt3 4992 xp0 5086 fvsnun1 5756 caov12 6109 caov13 6111 djuassen 7279 xpdjuen 7280 rec1nq 7457 halfnqq 7472 negsubdii 8306 halfpm6th 9205 decmul1 9514 i4 10716 fac4 10807 imi 11047 resqrexlemover 11157 ef01bndlem 11902 znnen 12558 sn0cld 14316 cospi 14976 sincos4thpi 15016 sincos3rdpi 15019 lgsdir2lem1 15185 lgsdir2lem5 15189 2lgsoddprmlem3d 15267 ex-bc 15291 ex-gcd 15293 |
Copyright terms: Public domain | W3C validator |