ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3i GIF version

Theorem 3eqtr3i 2199
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr3i.1 𝐴 = 𝐵
3eqtr3i.2 𝐴 = 𝐶
3eqtr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3i 𝐶 = 𝐷

Proof of Theorem 3eqtr3i
StepHypRef Expression
1 3eqtr3i.1 . . 3 𝐴 = 𝐵
2 3eqtr3i.2 . . 3 𝐴 = 𝐶
31, 2eqtr3i 2193 . 2 𝐵 = 𝐶
4 3eqtr3i.3 . 2 𝐵 = 𝐷
53, 4eqtr3i 2193 1 𝐶 = 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163
This theorem is referenced by:  csbvarg  3077  un12  3285  in12  3338  indif1  3372  difundir  3380  difindir  3382  dif32  3390  resmpt3  4938  xp0  5028  fvsnun1  5690  caov12  6038  caov13  6040  djuassen  7181  xpdjuen  7182  rec1nq  7344  halfnqq  7359  negsubdii  8191  halfpm6th  9085  decmul1  9393  i4  10565  fac4  10654  imi  10851  resqrexlemover  10961  ef01bndlem  11706  znnen  12340  sn0cld  12852  cospi  13436  sincos4thpi  13476  sincos3rdpi  13479  lgsdir2lem1  13644  lgsdir2lem5  13648  ex-bc  13685  ex-gcd  13687
  Copyright terms: Public domain W3C validator