| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 1, 2 | eqtr3i 2228 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtr3i 2228 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: csbvarg 3121 un12 3331 in12 3384 indif1 3418 difundir 3426 difindir 3428 dif32 3436 resmpt3 5008 xp0 5102 fvsnun1 5781 caov12 6135 caov13 6137 djuassen 7329 xpdjuen 7330 rec1nq 7508 halfnqq 7523 negsubdii 8357 halfpm6th 9257 decmul1 9567 i4 10787 fac4 10878 imi 11211 resqrexlemover 11321 ef01bndlem 12067 modsubi 12742 gcdmodi 12744 numexpp1 12747 karatsuba 12753 znnen 12769 sn0cld 14609 cospi 15272 sincos4thpi 15312 sincos3rdpi 15315 lgsdir2lem1 15505 lgsdir2lem5 15509 2lgsoddprmlem3d 15587 ex-bc 15669 ex-gcd 15671 |
| Copyright terms: Public domain | W3C validator |