ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdm2 GIF version

Theorem resdm2 5157
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2 (𝐴 ↾ dom 𝐴) = 𝐴

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 5129 . 2 (𝐴 ↾ dom 𝐴) = (𝐴 ↾ dom 𝐴)
2 relcnv 5044 . . 3 Rel 𝐴
3 resdm 4982 . . 3 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
42, 3ax-mp 5 . 2 (𝐴 ↾ dom 𝐴) = 𝐴
5 dmcnvcnv 4887 . . 3 dom 𝐴 = dom 𝐴
65reseq2i 4940 . 2 (𝐴 ↾ dom 𝐴) = (𝐴 ↾ dom 𝐴)
71, 4, 63eqtr3ri 2223 1 (𝐴 ↾ dom 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ccnv 4659  dom cdm 4660  cres 4662  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672
This theorem is referenced by:  resdmres  5158
  Copyright terms: Public domain W3C validator