ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6 GIF version

Theorem 3lcm2e6 12567
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6 (3 lcm 2) = 6

Proof of Theorem 3lcm2e6
StepHypRef Expression
1 2re 9136 . . . . . 6 2 ∈ ℝ
2 2lt3 9237 . . . . . 6 2 < 3
31, 2gtneii 8198 . . . . 5 3 ≠ 2
4 3prm 12535 . . . . . 6 3 ∈ ℙ
5 2prm 12534 . . . . . 6 2 ∈ ℙ
6 prmrp 12552 . . . . . 6 ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2))
74, 5, 6mp2an 426 . . . . 5 ((3 gcd 2) = 1 ↔ 3 ≠ 2)
83, 7mpbir 146 . . . 4 (3 gcd 2) = 1
98oveq2i 5973 . . 3 ((3 lcm 2) · (3 gcd 2)) = ((3 lcm 2) · 1)
10 3nn 9229 . . . 4 3 ∈ ℕ
11 2nn 9228 . . . 4 2 ∈ ℕ
12 lcmgcdnn 12489 . . . 4 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
1310, 11, 12mp2an 426 . . 3 ((3 lcm 2) · (3 gcd 2)) = (3 · 2)
1410nnzi 9423 . . . . . 6 3 ∈ ℤ
1511nnzi 9423 . . . . . 6 2 ∈ ℤ
16 lcmcl 12479 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
1714, 15, 16mp2an 426 . . . . 5 (3 lcm 2) ∈ ℕ0
1817nn0cni 9337 . . . 4 (3 lcm 2) ∈ ℂ
1918mulridi 8104 . . 3 ((3 lcm 2) · 1) = (3 lcm 2)
209, 13, 193eqtr3ri 2236 . 2 (3 lcm 2) = (3 · 2)
21 3t2e6 9223 . 2 (3 · 2) = 6
2220, 21eqtri 2227 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  wne 2377  (class class class)co 5962  1c1 7956   · cmul 7960  cn 9066  2c2 9117  3c3 9118  6c6 9121  0cn0 9325  cz 9402   gcd cgcd 12359   lcm clcm 12467  cprime 12514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-lcm 12468  df-prm 12515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator