| Step | Hyp | Ref
 | Expression | 
| 1 |   | id 19 | 
. . . 4
⊢ (𝑤 = ∅ → 𝑤 = ∅) | 
| 2 |   | difeq2 3275 | 
. . . 4
⊢ (𝑤 = ∅ → (𝐴 ∖ 𝑤) = (𝐴 ∖ ∅)) | 
| 3 | 1, 2 | uneq12d 3318 | 
. . 3
⊢ (𝑤 = ∅ → (𝑤 ∪ (𝐴 ∖ 𝑤)) = (∅ ∪ (𝐴 ∖ ∅))) | 
| 4 | 3 | eqeq2d 2208 | 
. 2
⊢ (𝑤 = ∅ → (𝐴 = (𝑤 ∪ (𝐴 ∖ 𝑤)) ↔ 𝐴 = (∅ ∪ (𝐴 ∖ ∅)))) | 
| 5 |   | id 19 | 
. . . 4
⊢ (𝑤 = 𝑣 → 𝑤 = 𝑣) | 
| 6 |   | difeq2 3275 | 
. . . 4
⊢ (𝑤 = 𝑣 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝑣)) | 
| 7 | 5, 6 | uneq12d 3318 | 
. . 3
⊢ (𝑤 = 𝑣 → (𝑤 ∪ (𝐴 ∖ 𝑤)) = (𝑣 ∪ (𝐴 ∖ 𝑣))) | 
| 8 | 7 | eqeq2d 2208 | 
. 2
⊢ (𝑤 = 𝑣 → (𝐴 = (𝑤 ∪ (𝐴 ∖ 𝑤)) ↔ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣)))) | 
| 9 |   | id 19 | 
. . . 4
⊢ (𝑤 = (𝑣 ∪ {𝑧}) → 𝑤 = (𝑣 ∪ {𝑧})) | 
| 10 |   | difeq2 3275 | 
. . . 4
⊢ (𝑤 = (𝑣 ∪ {𝑧}) → (𝐴 ∖ 𝑤) = (𝐴 ∖ (𝑣 ∪ {𝑧}))) | 
| 11 | 9, 10 | uneq12d 3318 | 
. . 3
⊢ (𝑤 = (𝑣 ∪ {𝑧}) → (𝑤 ∪ (𝐴 ∖ 𝑤)) = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧})))) | 
| 12 | 11 | eqeq2d 2208 | 
. 2
⊢ (𝑤 = (𝑣 ∪ {𝑧}) → (𝐴 = (𝑤 ∪ (𝐴 ∖ 𝑤)) ↔ 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))))) | 
| 13 |   | id 19 | 
. . . 4
⊢ (𝑤 = 𝐵 → 𝑤 = 𝐵) | 
| 14 |   | difeq2 3275 | 
. . . 4
⊢ (𝑤 = 𝐵 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝐵)) | 
| 15 | 13, 14 | uneq12d 3318 | 
. . 3
⊢ (𝑤 = 𝐵 → (𝑤 ∪ (𝐴 ∖ 𝑤)) = (𝐵 ∪ (𝐴 ∖ 𝐵))) | 
| 16 | 15 | eqeq2d 2208 | 
. 2
⊢ (𝑤 = 𝐵 → (𝐴 = (𝑤 ∪ (𝐴 ∖ 𝑤)) ↔ 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)))) | 
| 17 |   | un0 3484 | 
. . . 4
⊢ ((𝐴 ∖ ∅) ∪ ∅)
= (𝐴 ∖
∅) | 
| 18 |   | uncom 3307 | 
. . . 4
⊢ ((𝐴 ∖ ∅) ∪ ∅)
= (∅ ∪ (𝐴 ∖
∅)) | 
| 19 |   | dif0 3521 | 
. . . 4
⊢ (𝐴 ∖ ∅) = 𝐴 | 
| 20 | 17, 18, 19 | 3eqtr3ri 2226 | 
. . 3
⊢ 𝐴 = (∅ ∪ (𝐴 ∖
∅)) | 
| 21 | 20 | a1i 9 | 
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (∅ ∪ (𝐴 ∖ ∅))) | 
| 22 |   | difundi 3415 | 
. . . . . . 7
⊢ (𝐴 ∖ (𝑣 ∪ {𝑧})) = ((𝐴 ∖ 𝑣) ∩ (𝐴 ∖ {𝑧})) | 
| 23 | 22 | uneq2i 3314 | 
. . . . . 6
⊢ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = ((𝑣 ∪ {𝑧}) ∪ ((𝐴 ∖ 𝑣) ∩ (𝐴 ∖ {𝑧}))) | 
| 24 |   | undi 3411 | 
. . . . . 6
⊢ ((𝑣 ∪ {𝑧}) ∪ ((𝐴 ∖ 𝑣) ∩ (𝐴 ∖ {𝑧}))) = (((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧}))) | 
| 25 | 23, 24 | eqtri 2217 | 
. . . . 5
⊢ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = (((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧}))) | 
| 26 |   | uncom 3307 | 
. . . . . . . . 9
⊢ (𝑣 ∪ {𝑧}) = ({𝑧} ∪ 𝑣) | 
| 27 | 26 | uneq1i 3313 | 
. . . . . . . 8
⊢ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) = (({𝑧} ∪ 𝑣) ∪ (𝐴 ∖ 𝑣)) | 
| 28 |   | unass 3320 | 
. . . . . . . 8
⊢ (({𝑧} ∪ 𝑣) ∪ (𝐴 ∖ 𝑣)) = ({𝑧} ∪ (𝑣 ∪ (𝐴 ∖ 𝑣))) | 
| 29 | 27, 28 | eqtri 2217 | 
. . . . . . 7
⊢ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) = ({𝑧} ∪ (𝑣 ∪ (𝐴 ∖ 𝑣))) | 
| 30 |   | simp3 1001 | 
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | 
| 31 | 30 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝐵 ⊆ 𝐴) | 
| 32 |   | simplrr 536 | 
. . . . . . . . . . . 12
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝑧 ∈ (𝐵 ∖ 𝑣)) | 
| 33 | 32 | eldifad 3168 | 
. . . . . . . . . . 11
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝑧 ∈ 𝐵) | 
| 34 | 31, 33 | sseldd 3184 | 
. . . . . . . . . 10
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝑧 ∈ 𝐴) | 
| 35 | 34 | snssd 3767 | 
. . . . . . . . 9
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → {𝑧} ⊆ 𝐴) | 
| 36 |   | ssequn1 3333 | 
. . . . . . . . 9
⊢ ({𝑧} ⊆ 𝐴 ↔ ({𝑧} ∪ 𝐴) = 𝐴) | 
| 37 | 35, 36 | sylib 122 | 
. . . . . . . 8
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ({𝑧} ∪ 𝐴) = 𝐴) | 
| 38 |   | simpr 110 | 
. . . . . . . . 9
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) | 
| 39 | 38 | uneq2d 3317 | 
. . . . . . . 8
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ({𝑧} ∪ 𝐴) = ({𝑧} ∪ (𝑣 ∪ (𝐴 ∖ 𝑣)))) | 
| 40 | 37, 39 | eqtr3d 2231 | 
. . . . . . 7
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝐴 = ({𝑧} ∪ (𝑣 ∪ (𝐴 ∖ 𝑣)))) | 
| 41 | 29, 40 | eqtr4id 2248 | 
. . . . . 6
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) = 𝐴) | 
| 42 |   | unass 3320 | 
. . . . . . . 8
⊢ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = (𝑣 ∪ ({𝑧} ∪ (𝐴 ∖ {𝑧}))) | 
| 43 |   | uncom 3307 | 
. . . . . . . . . 10
⊢ ({𝑧} ∪ (𝐴 ∖ {𝑧})) = ((𝐴 ∖ {𝑧}) ∪ {𝑧}) | 
| 44 |   | simp1 999 | 
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 45 | 44 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 46 |   | dcdifsnid 6562 | 
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑧 ∈ 𝐴) → ((𝐴 ∖ {𝑧}) ∪ {𝑧}) = 𝐴) | 
| 47 | 45, 34, 46 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ((𝐴 ∖ {𝑧}) ∪ {𝑧}) = 𝐴) | 
| 48 | 43, 47 | eqtrid 2241 | 
. . . . . . . . 9
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ({𝑧} ∪ (𝐴 ∖ {𝑧})) = 𝐴) | 
| 49 | 48 | uneq2d 3317 | 
. . . . . . . 8
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → (𝑣 ∪ ({𝑧} ∪ (𝐴 ∖ {𝑧}))) = (𝑣 ∪ 𝐴)) | 
| 50 | 42, 49 | eqtrid 2241 | 
. . . . . . 7
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = (𝑣 ∪ 𝐴)) | 
| 51 |   | simplrl 535 | 
. . . . . . . . 9
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝑣 ⊆ 𝐵) | 
| 52 | 51, 31 | sstrd 3193 | 
. . . . . . . 8
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝑣 ⊆ 𝐴) | 
| 53 |   | ssequn1 3333 | 
. . . . . . . 8
⊢ (𝑣 ⊆ 𝐴 ↔ (𝑣 ∪ 𝐴) = 𝐴) | 
| 54 | 52, 53 | sylib 122 | 
. . . . . . 7
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → (𝑣 ∪ 𝐴) = 𝐴) | 
| 55 | 50, 54 | eqtrd 2229 | 
. . . . . 6
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = 𝐴) | 
| 56 | 41, 55 | ineq12d 3365 | 
. . . . 5
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → (((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ 𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧}))) = (𝐴 ∩ 𝐴)) | 
| 57 | 25, 56 | eqtrid 2241 | 
. . . 4
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = (𝐴 ∩ 𝐴)) | 
| 58 |   | inidm 3372 | 
. . . 4
⊢ (𝐴 ∩ 𝐴) = 𝐴 | 
| 59 | 57, 58 | eqtr2di 2246 | 
. . 3
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣))) → 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧})))) | 
| 60 | 59 | ex 115 | 
. 2
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑣))) → (𝐴 = (𝑣 ∪ (𝐴 ∖ 𝑣)) → 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))))) | 
| 61 |   | simp2 1000 | 
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | 
| 62 | 4, 8, 12, 16, 21, 60, 61 | findcard2sd 6953 | 
1
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |