ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdc GIF version

Theorem undifdc 6889
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3489 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdc ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem undifdc
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
2 difeq2 3234 . . . 4 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∖ ∅))
31, 2uneq12d 3277 . . 3 (𝑤 = ∅ → (𝑤 ∪ (𝐴𝑤)) = (∅ ∪ (𝐴 ∖ ∅)))
43eqeq2d 2177 . 2 (𝑤 = ∅ → (𝐴 = (𝑤 ∪ (𝐴𝑤)) ↔ 𝐴 = (∅ ∪ (𝐴 ∖ ∅))))
5 id 19 . . . 4 (𝑤 = 𝑣𝑤 = 𝑣)
6 difeq2 3234 . . . 4 (𝑤 = 𝑣 → (𝐴𝑤) = (𝐴𝑣))
75, 6uneq12d 3277 . . 3 (𝑤 = 𝑣 → (𝑤 ∪ (𝐴𝑤)) = (𝑣 ∪ (𝐴𝑣)))
87eqeq2d 2177 . 2 (𝑤 = 𝑣 → (𝐴 = (𝑤 ∪ (𝐴𝑤)) ↔ 𝐴 = (𝑣 ∪ (𝐴𝑣))))
9 id 19 . . . 4 (𝑤 = (𝑣 ∪ {𝑧}) → 𝑤 = (𝑣 ∪ {𝑧}))
10 difeq2 3234 . . . 4 (𝑤 = (𝑣 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∖ (𝑣 ∪ {𝑧})))
119, 10uneq12d 3277 . . 3 (𝑤 = (𝑣 ∪ {𝑧}) → (𝑤 ∪ (𝐴𝑤)) = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))))
1211eqeq2d 2177 . 2 (𝑤 = (𝑣 ∪ {𝑧}) → (𝐴 = (𝑤 ∪ (𝐴𝑤)) ↔ 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧})))))
13 id 19 . . . 4 (𝑤 = 𝐵𝑤 = 𝐵)
14 difeq2 3234 . . . 4 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
1513, 14uneq12d 3277 . . 3 (𝑤 = 𝐵 → (𝑤 ∪ (𝐴𝑤)) = (𝐵 ∪ (𝐴𝐵)))
1615eqeq2d 2177 . 2 (𝑤 = 𝐵 → (𝐴 = (𝑤 ∪ (𝐴𝑤)) ↔ 𝐴 = (𝐵 ∪ (𝐴𝐵))))
17 un0 3442 . . . 4 ((𝐴 ∖ ∅) ∪ ∅) = (𝐴 ∖ ∅)
18 uncom 3266 . . . 4 ((𝐴 ∖ ∅) ∪ ∅) = (∅ ∪ (𝐴 ∖ ∅))
19 dif0 3479 . . . 4 (𝐴 ∖ ∅) = 𝐴
2017, 18, 193eqtr3ri 2195 . . 3 𝐴 = (∅ ∪ (𝐴 ∖ ∅))
2120a1i 9 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (∅ ∪ (𝐴 ∖ ∅)))
22 difundi 3374 . . . . . . 7 (𝐴 ∖ (𝑣 ∪ {𝑧})) = ((𝐴𝑣) ∩ (𝐴 ∖ {𝑧}))
2322uneq2i 3273 . . . . . 6 ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = ((𝑣 ∪ {𝑧}) ∪ ((𝐴𝑣) ∩ (𝐴 ∖ {𝑧})))
24 undi 3370 . . . . . 6 ((𝑣 ∪ {𝑧}) ∪ ((𝐴𝑣) ∩ (𝐴 ∖ {𝑧}))) = (((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})))
2523, 24eqtri 2186 . . . . 5 ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = (((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})))
26 uncom 3266 . . . . . . . . 9 (𝑣 ∪ {𝑧}) = ({𝑧} ∪ 𝑣)
2726uneq1i 3272 . . . . . . . 8 ((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) = (({𝑧} ∪ 𝑣) ∪ (𝐴𝑣))
28 unass 3279 . . . . . . . 8 (({𝑧} ∪ 𝑣) ∪ (𝐴𝑣)) = ({𝑧} ∪ (𝑣 ∪ (𝐴𝑣)))
2927, 28eqtri 2186 . . . . . . 7 ((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) = ({𝑧} ∪ (𝑣 ∪ (𝐴𝑣)))
30 simp3 989 . . . . . . . . . . . 12 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
3130ad3antrrr 484 . . . . . . . . . . 11 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝐵𝐴)
32 simplrr 526 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝑧 ∈ (𝐵𝑣))
3332eldifad 3127 . . . . . . . . . . 11 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝑧𝐵)
3431, 33sseldd 3143 . . . . . . . . . 10 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝑧𝐴)
3534snssd 3718 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → {𝑧} ⊆ 𝐴)
36 ssequn1 3292 . . . . . . . . 9 ({𝑧} ⊆ 𝐴 ↔ ({𝑧} ∪ 𝐴) = 𝐴)
3735, 36sylib 121 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ({𝑧} ∪ 𝐴) = 𝐴)
38 simpr 109 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝐴 = (𝑣 ∪ (𝐴𝑣)))
3938uneq2d 3276 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ({𝑧} ∪ 𝐴) = ({𝑧} ∪ (𝑣 ∪ (𝐴𝑣))))
4037, 39eqtr3d 2200 . . . . . . 7 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝐴 = ({𝑧} ∪ (𝑣 ∪ (𝐴𝑣))))
4129, 40eqtr4id 2218 . . . . . 6 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) = 𝐴)
42 unass 3279 . . . . . . . 8 ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = (𝑣 ∪ ({𝑧} ∪ (𝐴 ∖ {𝑧})))
43 uncom 3266 . . . . . . . . . 10 ({𝑧} ∪ (𝐴 ∖ {𝑧})) = ((𝐴 ∖ {𝑧}) ∪ {𝑧})
44 simp1 987 . . . . . . . . . . . 12 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4544ad3antrrr 484 . . . . . . . . . . 11 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
46 dcdifsnid 6472 . . . . . . . . . . 11 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑧𝐴) → ((𝐴 ∖ {𝑧}) ∪ {𝑧}) = 𝐴)
4745, 34, 46syl2anc 409 . . . . . . . . . 10 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ((𝐴 ∖ {𝑧}) ∪ {𝑧}) = 𝐴)
4843, 47syl5eq 2211 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ({𝑧} ∪ (𝐴 ∖ {𝑧})) = 𝐴)
4948uneq2d 3276 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → (𝑣 ∪ ({𝑧} ∪ (𝐴 ∖ {𝑧}))) = (𝑣𝐴))
5042, 49syl5eq 2211 . . . . . . 7 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = (𝑣𝐴))
51 simplrl 525 . . . . . . . . 9 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝑣𝐵)
5251, 31sstrd 3152 . . . . . . . 8 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝑣𝐴)
53 ssequn1 3292 . . . . . . . 8 (𝑣𝐴 ↔ (𝑣𝐴) = 𝐴)
5452, 53sylib 121 . . . . . . 7 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → (𝑣𝐴) = 𝐴)
5550, 54eqtrd 2198 . . . . . 6 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧})) = 𝐴)
5641, 55ineq12d 3324 . . . . 5 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → (((𝑣 ∪ {𝑧}) ∪ (𝐴𝑣)) ∩ ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ {𝑧}))) = (𝐴𝐴))
5725, 56syl5eq 2211 . . . 4 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))) = (𝐴𝐴))
58 inidm 3331 . . . 4 (𝐴𝐴) = 𝐴
5957, 58eqtr2di 2216 . . 3 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) ∧ 𝐴 = (𝑣 ∪ (𝐴𝑣))) → 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧}))))
6059ex 114 . 2 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑣 ∈ Fin) ∧ (𝑣𝐵𝑧 ∈ (𝐵𝑣))) → (𝐴 = (𝑣 ∪ (𝐴𝑣)) → 𝐴 = ((𝑣 ∪ {𝑧}) ∪ (𝐴 ∖ (𝑣 ∪ {𝑧})))))
61 simp2 988 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
624, 8, 12, 16, 21, 60, 61findcard2sd 6858 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  cdif 3113  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  undiffi  6890
  Copyright terms: Public domain W3C validator