| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 6gcd4e2 | GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6nn 9156 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9347 | . . 3 ⊢ 6 ∈ ℤ | 
| 3 | 4z 9356 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 12140 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) | 
| 6 | 4cn 9068 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 9061 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 9134 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 8171 | . . 3 ⊢ (2 + 4) = 6 | 
| 10 | 9 | oveq2i 5933 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) | 
| 11 | 2z 9354 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 12152 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 426 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) | 
| 14 | 2p2e4 9117 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 5933 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) | 
| 16 | gcdcom 12140 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 426 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) | 
| 18 | 15, 17 | eqtri 2217 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) | 
| 19 | 13, 18 | eqtri 2217 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) | 
| 20 | gcdid 12153 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) | 
| 22 | 2re 9060 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 9080 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 11236 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 426 | . . . 4 ⊢ (abs‘2) = 2 | 
| 26 | 21, 25 | eqtri 2217 | . . 3 ⊢ (2 gcd 2) = 2 | 
| 27 | gcdadd 12152 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 426 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) | 
| 29 | 19, 26, 28 | 3eqtr3ri 2226 | . 2 ⊢ (4 gcd (2 + 4)) = 2 | 
| 30 | 5, 10, 29 | 3eqtr2i 2223 | 1 ⊢ (6 gcd 4) = 2 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℝcr 7878 0cc0 7879 + caddc 7882 ≤ cle 8062 2c2 9041 4c4 9043 6c6 9045 ℤcz 9326 abscabs 11162 gcd cgcd 12120 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 | 
| This theorem is referenced by: 6lcm4e12 12255 | 
| Copyright terms: Public domain | W3C validator |