ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6gcd4e2 GIF version

Theorem 6gcd4e2 12511
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6gcd4e2 (6 gcd 4) = 2

Proof of Theorem 6gcd4e2
StepHypRef Expression
1 6nn 9272 . . . 4 6 ∈ ℕ
21nnzi 9463 . . 3 6 ∈ ℤ
3 4z 9472 . . 3 4 ∈ ℤ
4 gcdcom 12489 . . 3 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6))
52, 3, 4mp2an 426 . 2 (6 gcd 4) = (4 gcd 6)
6 4cn 9184 . . . 4 4 ∈ ℂ
7 2cn 9177 . . . 4 2 ∈ ℂ
8 4p2e6 9250 . . . 4 (4 + 2) = 6
96, 7, 8addcomli 8287 . . 3 (2 + 4) = 6
109oveq2i 6011 . 2 (4 gcd (2 + 4)) = (4 gcd 6)
11 2z 9470 . . . . 5 2 ∈ ℤ
12 gcdadd 12501 . . . . 5 ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2)))
1311, 11, 12mp2an 426 . . . 4 (2 gcd 2) = (2 gcd (2 + 2))
14 2p2e4 9233 . . . . . 6 (2 + 2) = 4
1514oveq2i 6011 . . . . 5 (2 gcd (2 + 2)) = (2 gcd 4)
16 gcdcom 12489 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2))
1711, 3, 16mp2an 426 . . . . 5 (2 gcd 4) = (4 gcd 2)
1815, 17eqtri 2250 . . . 4 (2 gcd (2 + 2)) = (4 gcd 2)
1913, 18eqtri 2250 . . 3 (2 gcd 2) = (4 gcd 2)
20 gcdid 12502 . . . . 5 (2 ∈ ℤ → (2 gcd 2) = (abs‘2))
2111, 20ax-mp 5 . . . 4 (2 gcd 2) = (abs‘2)
22 2re 9176 . . . . 5 2 ∈ ℝ
23 0le2 9196 . . . . 5 0 ≤ 2
24 absid 11577 . . . . 5 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
2522, 23, 24mp2an 426 . . . 4 (abs‘2) = 2
2621, 25eqtri 2250 . . 3 (2 gcd 2) = 2
27 gcdadd 12501 . . . 4 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4)))
283, 11, 27mp2an 426 . . 3 (4 gcd 2) = (4 gcd (2 + 4))
2919, 26, 283eqtr3ri 2259 . 2 (4 gcd (2 + 4)) = 2
305, 10, 293eqtr2i 2256 1 (6 gcd 4) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998  cle 8178  2c2 9157  4c4 9159  6c6 9161  cz 9442  abscabs 11503   gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470
This theorem is referenced by:  6lcm4e12  12604
  Copyright terms: Public domain W3C validator