![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6gcd4e2 | GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9086 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 9276 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 9285 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 11976 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 8999 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 8992 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 9064 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 8104 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 5888 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 9283 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 11988 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 426 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 9048 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 5888 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 11976 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 426 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2198 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2198 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 11989 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 8991 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 9011 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 11082 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 426 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2198 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 11988 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 426 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2207 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2204 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 ℝcr 7812 0cc0 7813 + caddc 7816 ≤ cle 7995 2c2 8972 4c4 8974 6c6 8976 ℤcz 9255 abscabs 11008 gcd cgcd 11945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-fl 10272 df-mod 10325 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-dvds 11797 df-gcd 11946 |
This theorem is referenced by: 6lcm4e12 12089 |
Copyright terms: Public domain | W3C validator |