![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6gcd4e2 | GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 8737 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 8927 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 8936 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 11457 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 420 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 8656 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 8649 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 8715 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 7778 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 5717 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 8934 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 11468 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 420 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 8699 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 5717 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 11457 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 420 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2120 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2120 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 11469 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 7 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 8648 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 8668 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 10683 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 420 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2120 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 11468 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 420 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2129 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2126 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∈ wcel 1448 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 ℝcr 7499 0cc0 7500 + caddc 7503 ≤ cle 7673 2c2 8629 4c4 8631 6c6 8633 ℤcz 8906 abscabs 10609 gcd cgcd 11430 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 ax-caucvg 7615 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-frec 6218 df-sup 6786 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-5 8640 df-6 8641 df-n0 8830 df-z 8907 df-uz 9177 df-q 9262 df-rp 9292 df-fz 9632 df-fzo 9761 df-fl 9884 df-mod 9937 df-seqfrec 10060 df-exp 10134 df-cj 10455 df-re 10456 df-im 10457 df-rsqrt 10610 df-abs 10611 df-dvds 11289 df-gcd 11431 |
This theorem is referenced by: 6lcm4e12 11561 |
Copyright terms: Public domain | W3C validator |