| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6gcd4e2 | GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9272 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9463 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 4z 9472 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 12489 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
| 6 | 4cn 9184 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 9177 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 9250 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 8287 | . . 3 ⊢ (2 + 4) = 6 |
| 10 | 9 | oveq2i 6011 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
| 11 | 2z 9470 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 12501 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 426 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
| 14 | 2p2e4 9233 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 6011 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
| 16 | gcdcom 12489 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 426 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
| 18 | 15, 17 | eqtri 2250 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
| 19 | 13, 18 | eqtri 2250 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
| 20 | gcdid 12502 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
| 22 | 2re 9176 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 9196 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 11577 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 426 | . . . 4 ⊢ (abs‘2) = 2 |
| 26 | 21, 25 | eqtri 2250 | . . 3 ⊢ (2 gcd 2) = 2 |
| 27 | gcdadd 12501 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 426 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
| 29 | 19, 26, 28 | 3eqtr3ri 2259 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
| 30 | 5, 10, 29 | 3eqtr2i 2256 | 1 ⊢ (6 gcd 4) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℝcr 7994 0cc0 7995 + caddc 7998 ≤ cle 8178 2c2 9157 4c4 9159 6c6 9161 ℤcz 9442 abscabs 11503 gcd cgcd 12469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 |
| This theorem is referenced by: 6lcm4e12 12604 |
| Copyright terms: Public domain | W3C validator |