![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6gcd4e2 | GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9147 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 9338 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 9347 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 12110 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 9060 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 9053 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 9125 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 8164 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 5929 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 9345 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 12122 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 426 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 9109 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 5929 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 12110 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 426 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2214 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2214 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 12123 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 9052 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 9072 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 11215 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 426 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2214 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 12122 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 426 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2223 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2220 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 + caddc 7875 ≤ cle 8055 2c2 9033 4c4 9035 6c6 9037 ℤcz 9317 abscabs 11141 gcd cgcd 12079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 df-gcd 12080 |
This theorem is referenced by: 6lcm4e12 12225 |
Copyright terms: Public domain | W3C validator |